Subramaniam M, Salvi R J, Spongr V P, Henderson D, Powers N L
Department of Communicative Disorders and Sciences, State University of New York, Buffalo 14214.
Hear Res. 1994 Apr;74(1-2):204-16. doi: 10.1016/0378-5955(94)90188-0.
Changes in distortion product otoacoustic emissions (DPOAEs) were examined during and after interrupted noise exposures and compared to the condition of the outer hair cells (OHCs) and inner hair cells (IHCs) as assessed by scanning electron microscopy (SEM). Binaural, adult chinchillas were exposed to a 95 dB SPL, octave band noise centered at 0.5 kHz for 15 days using a 3 h on/9 h off schedule. DPOAEs were measured before, during and after the exposures. DPOAE amplitudes decreased significantly during the first few days of the interrupted noise exposures and then began to recover. At most frequencies, the emission amplitudes recovered completely to pre-exposure baseline values by five days after the last exposure. The results of the present study indicate that the changes in DPOAE amplitude paralleled the recovery in the amplitude and threshold of the compound action potentials as reported previously (Boettcher et al., 1992). Although the DPOAEs completely recovered, considerable OHC loss and stereocilia disarray was evident even four weeks after exposure.