Heiss W D, Herholz K
Max-Planck-Institut für neurologische Forschung and Neurologische Universitätsklinik, Köln, Germany.
Eur J Nucl Med. 1994 May;21(5):455-65. doi: 10.1007/BF00171424.
In stroke patients, multitracer positron emission tomography (PET) permits the assessment of acute changes in regional cerebral blood flow (rCBF), blood volume (rCBV), oxygen consumption (rCMRO2) and glucose metabolism (rCMRgl), which are the initial steps in the complex molecular and biochemical process leading to ischaemic cell damage. While early infarcts exhibit low flow and oxygen consumption, increased oxygen extraction fraction (OEF) due to preserved metabolism at reduced flow suggests viability of tissue. However, most initially "viable" tissue will be metabolically deranged and will become necrotic in the further course; only in a few instances do these tissue compartments recover to normal function. Increased glucose uptake at reduced oxygen supply induces non-oxidative glycolysis with noxious lactacidosis, whereas hyperperfusion beyond the metabolic demand is of controversial effect. In subacute or chronic states after ischaemia reduced flow can be compensated by increased blood volume; when perfusional reserve is exhausted, oxygen extraction increases. Such findings may guide therapeutic decisions and predict the severity of permanent deficits. Functional deactivation of tissue remote from the lesion is found regularly as a sign of damaged connecting pathways. Flow and metabolic studies during the performance of specific tasks help to detect alternative functional loops and may yield prognostic information. Repeat studies in the course of stroke are employed for the evaluation of therapeutic strategies targeted to improve reperfusion or to effect metabolic or biochemical alterations. In the future PET may gain additional clinical importance when patients are selected for elective treatment according to the prevailing pathophysiological pattern.
在中风患者中,多示踪剂正电子发射断层扫描(PET)可用于评估局部脑血流量(rCBF)、血容量(rCBV)、氧耗量(rCMRO2)和葡萄糖代谢(rCMRgl)的急性变化,这些是导致缺血性细胞损伤的复杂分子和生化过程的初始步骤。早期梗死灶表现为低血流量和氧耗量,而由于血流量减少时代谢仍保持正常,氧摄取分数(OEF)增加提示组织具有存活能力。然而,大多数最初“存活”的组织会发生代谢紊乱,并在后续过程中坏死;只有少数情况下这些组织区域能恢复正常功能。在氧供应减少时葡萄糖摄取增加会诱导无氧糖酵解并产生有害的乳酸酸中毒,而超过代谢需求的高灌注的影响则存在争议。在缺血后的亚急性或慢性状态下,血流量减少可通过血容量增加来代偿;当灌注储备耗尽时,氧摄取增加。这些发现可指导治疗决策并预测永久性缺陷的严重程度。远离病变部位的组织经常出现功能失活,这是连接通路受损的迹象。在执行特定任务期间进行的血流和代谢研究有助于检测替代功能环路,并可能产生预后信息。在中风过程中进行重复研究可用于评估旨在改善再灌注或引起代谢或生化改变的治疗策略。未来,当根据主要的病理生理模式选择患者进行选择性治疗时,PET可能会在临床上具有更大的重要性。