Suppr超能文献

信号检测理论与重建算法——噪声中图像的性能

Signal detection theory and reconstruction algorithms--performance for images in noise.

作者信息

Jalihal D, Nolte L W

机构信息

Department of Electrical Engineering, Duke University, Durham, NC 27708-0291.

出版信息

IEEE Trans Biomed Eng. 1994 May;41(5):501-4. doi: 10.1109/10.293226.

Abstract

In many noisy image processing situations, decision making is the ultimate objective. In this paper, we show using signal detection theory how direct optimal processing of the projection data yields a considerable gain in the decision making performance over that obtained by first using image reconstruction. The problem is formulated in the framework of a two hypotheses detection problem. Optimal processors based on the likelihood ratio approach have been presented for two cases. The first considers direct processing of the projection data. The second applies optimal decision theory to the reconstructed data. Results based on computer simulation are presented in the form of receiver operating curves (ROCs) for different signal-to-noise (SNR) ratios. Early results indicate that large performance gains can be achieved by direct optimal processing of the projection data compared with optimal processing of reconstructed data. Results for the latter case can be interpreted as providing an upper bound on all postreconstruction decision rules. We hope to extend this approach to a number of different aspects of the image decision making problem.

摘要

在许多噪声图像处理情形中,决策是最终目标。在本文中,我们运用信号检测理论表明,相较于先进行图像重建再做决策,对投影数据进行直接最优处理在决策性能上能带来显著提升。该问题在双假设检测问题的框架下被阐述。针对两种情况给出了基于似然比方法的最优处理器。第一种情况考虑对投影数据进行直接处理。第二种情况将最优决策理论应用于重建后的数据。基于计算机模拟的结果以不同信噪比(SNR)下的接收者操作特征曲线(ROC)形式呈现。早期结果表明,与对重建数据进行最优处理相比,对投影数据进行直接最优处理可实现大幅性能提升。后一种情况的结果可解释为为所有重建后决策规则提供了一个上限。我们希望将此方法扩展到图像决策问题的多个不同方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验