Suppr超能文献

使用 ¹³N-氨正电子发射断层扫描术对心肌血流进行定量的轴向分布模型的验证。

Validation of an axially distributed model for quantification of myocardial blood flow using ¹³N-ammonia PET.

机构信息

Department of Radiology, University of Washington, 4000 15th Ave NE, PO Box 357987, Seattle, WA 98195-6004, USA.

出版信息

J Nucl Cardiol. 2013 Feb;20(1):64-75. doi: 10.1007/s12350-012-9632-8. Epub 2012 Oct 19.

Abstract

BACKGROUND

Estimation of myocardial blood flow (MBF) with cardiac PET is often performed with conventional compartmental models. In this study, we developed and evaluated a physiologically and anatomically realistic axially distributed model. Unlike compartmental models, this axially distributed approach models both the temporal and the spatial gradients in uptake and retention along the capillary.

METHODS

We validated PET-derived flow estimates with microsphere studies in 19 (9 rest, 10 stress) studies in five dogs. The radiotracer, (13)N-ammonia, was injected intravenously while microspheres were administered into the left atrium. A regional reduction in hyperemic flow was forced by an external occluder in five of the stress studies. The flow estimates from the axially distributed model were compared with estimates from conventional compartmental models.

RESULTS

The mean difference between microspheres and the axially distributed blood flow estimates in each of the 17 segments was 0.03 mL/g/minute (95% CI [-0.05, 0.11]). The blood flow estimates were highly correlated with each regional microsphere value for the axially distributed model (y = 0.98x + 0.06 mL/g/minute; r = 0.74; P < .001), for the two-compartment (y = 0.64x + 0.34; r = 0.74; P < .001), and for three-compartment model (y = 0.69x + 0.54; r = 0.74; P < .001). The variance of the error of the estimates is higher with the axially distributed model than the compartmental models (1.7 [1.3, 2.1] times higher).

CONCLUSION

The proposed axially distributed model provided accurate regional estimates of MBF. The axially distributed model estimated blood flow with more accuracy, but less precision, than the evaluated compartmental models.

摘要

背景

心脏 PET 中 MBF 的估计通常采用传统的房室模型进行。在这项研究中,我们开发并评估了一种生理和解剖上真实的轴向分布模型。与房室模型不同,这种轴向分布方法既可以模拟沿毛细血管的摄取和保留的时间和空间梯度。

方法

我们通过五项犬研究中的 19 项(9 项静息,10 项应激)微球研究验证了 PET 衍生的血流估计值。放射性示踪剂(13)N-氨静脉内注射,同时将微球注入左心房。在五项应激研究中,通过外部阻塞器强制引起区域性的充血性血流减少。比较了轴向分布模型的血流估计值与传统房室模型的估计值。

结果

在每个 17 个节段中,微球与轴向分布血流估计值之间的平均差异为 0.03mL/g/min(95%CI[-0.05, 0.11])。轴向分布模型的血流估计值与每个区域微球值高度相关(y=0.98x+0.06mL/g/minute;r=0.74;P<0.001),对于两房室(y=0.64x+0.34;r=0.74;P<0.001)和三房室模型(y=0.69x+0.54;r=0.74;P<0.001)。与房室模型相比,轴向分布模型的估计误差方差更高(1.7[1.3, 2.1]倍)。

结论

提出的轴向分布模型提供了 MBF 的准确区域估计值。与评估的房室模型相比,轴向分布模型更准确地估计血流,但精度较低。

相似文献

1
Validation of an axially distributed model for quantification of myocardial blood flow using ¹³N-ammonia PET.
J Nucl Cardiol. 2013 Feb;20(1):64-75. doi: 10.1007/s12350-012-9632-8. Epub 2012 Oct 19.
3
Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography.
J Nucl Cardiol. 1996 Nov-Dec;3(6 Pt 1):494-507. doi: 10.1016/s1071-3581(96)90059-8.
10
Preclinical Validation of a Single-Scan Rest/Stress Imaging Technique for N-Ammonia Positron Emission Tomography Cardiac Perfusion Studies.
Circ Cardiovasc Imaging. 2020 Jan;13(1):e009407. doi: 10.1161/CIRCIMAGING.119.009407. Epub 2020 Jan 21.

引用本文的文献

2
Multiparametric Cardiac F-FDG PET in Humans: Kinetic Model Selection and Identifiability Analysis.
IEEE Trans Radiat Plasma Med Sci. 2020 Nov;4(6):759-767. doi: 10.1109/trpms.2020.3031274. Epub 2020 Oct 15.
3
Patient factors and outcomes associated with discordance between quantitative and qualitative cardiac PET ischemia information.
PLoS One. 2021 Mar 3;16(3):e0246149. doi: 10.1371/journal.pone.0246149. eCollection 2021.
4
Automatic in-line quantitative myocardial perfusion mapping: Processing algorithm and implementation.
Magn Reson Med. 2020 Feb;83(2):712-730. doi: 10.1002/mrm.27954. Epub 2019 Aug 23.
5
Myocardial Assessment with Cardiac CT: Ischemic Heart Disease and Beyond.
Curr Cardiovasc Imaging Rep. 2018;11(7):16. doi: 10.1007/s12410-018-9456-2. Epub 2018 Jun 2.
7
PET/MR: Yet another Tesla?
J Nucl Cardiol. 2017 Jun;24(3):1019-1031. doi: 10.1007/s12350-016-0665-2. Epub 2016 Sep 22.
8
Quantification of myocardial blood flow in absolute terms using (82)Rb PET imaging: the RUBY-10 Study.
JACC Cardiovasc Imaging. 2014 Nov;7(11):1119-1127. doi: 10.1016/j.jcmg.2014.08.003. Epub 2014 Oct 8.
9
Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT.
Phys Med Biol. 2014 Apr 7;59(7):1533-56. doi: 10.1088/0031-9155/59/7/1533. Epub 2014 Mar 10.
10
Myocardial perfusion models: a means or an end?
J Nucl Cardiol. 2013 Feb;20(1):20-2. doi: 10.1007/s12350-012-9604-z.

本文引用的文献

2
Assessment of myocardial perfusion by dynamic N-13 ammonia PET imaging: comparison of 2 tracer kinetic models.
J Nucl Cardiol. 2005 Jul-Aug;12(4):410-7. doi: 10.1016/j.nuclcard.2005.04.002.
3
Myocardial density and composition: a basis for calculating intracellular metabolite concentrations.
Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1742-9. doi: 10.1152/ajpheart.00478.2003. Epub 2003 Dec 23.
4
Distributed versus compartment models for PET receptor studies.
IEEE Trans Med Imaging. 2003 Jan;22(1):11-21. doi: 10.1109/TMI.2002.806576.
10
Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion.
J Appl Physiol (1985). 1993 May;74(5):2585-97. doi: 10.1152/jappl.1993.74.5.2585.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验