Garty H
Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel.
FASEB J. 1994 May;8(8):522-8. doi: 10.1096/fasebj.8.8.8181670.
The apical membrane of many tight epithelia contains Na+ channels that are primarily characterized by their high affinity to the diuretic blocker amiloride. These channels mediate the first step of active Na+ reabsorption essential for the maintenance of body salt and water homeostasis. They are regulated by mineralocorticoids, antidiuretic peptides, atrial natriuretic peptides, and other factors. The molecular events that mediate the hormonal actions are poorly understood. In addition, patch clamp studies have established that amiloride-sensitive channels in different epithelia may differ in their regulatory mechanisms and biophysical properties. Several groups have reported the biochemical purification and/or molecular cloning of putative channel components. Of particular importance is the recent cloning of three cDNAs, whose coexpression in Xenopus oocytes evokes a large amiloride-blockable Na+ specific conductance (Canesa et al. (1994) Nature (London), 367, 463-467. This review summarizes existing data on properties, regulatory mechanisms, and diversity of amiloride-blockable channels, describes the different putative channel components identified, and examines possible relationships among them.
许多紧密上皮细胞的顶端膜含有钠离子通道,其主要特征是对利尿剂阻滞剂氨氯吡咪具有高亲和力。这些通道介导了主动重吸收钠离子的第一步,这对于维持机体盐和水平衡至关重要。它们受盐皮质激素、抗利尿肽、心房利钠肽及其他因素的调节。介导激素作用的分子事件目前了解甚少。此外,膜片钳研究表明,不同上皮细胞中的氨氯吡咪敏感通道在调节机制和生物物理特性方面可能存在差异。多个研究小组报告了对假定通道成分的生化纯化和/或分子克隆。特别重要的是最近克隆出的三个互补DNA,它们在非洲爪蟾卵母细胞中的共表达可引发一种可被氨氯吡咪阻断的大的钠离子特异性电导(卡内萨等人,《自然》(伦敦),第367卷,第463 - 467页,1994年)。本综述总结了关于氨氯吡咪可阻断通道的特性、调节机制和多样性的现有数据,描述了已鉴定出的不同假定通道成分,并探讨了它们之间可能的关系。