Sumimoto H, Kage Y, Nunoi H, Sasaki H, Nose T, Fukumaki Y, Ohno M, Minakami S, Takeshige K
Department of Biochemistry, Kyushu University School of Medicine, Fukuoka, Japan.
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5345-9. doi: 10.1073/pnas.91.12.5345.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The activated oxidase is a complex of membrane-integrated cytochrome b558, composed of 91-kDa (gp91phox) and 22-kDa (p22phox) subunits, and two cytosolic factors (p47phox and p67phox), each containing two Src homology 3 (SH3) domains. Here we show that the region of the tandem SH3 domains of p47phox (p47-SH3) expressed as a glutathione S-transferase fusion protein inhibits the superoxide production in a cell-free system, indicating involvement of the domains in the activation. Furthermore, we find that arachidonic acid and sodium dodecyl sulfate, activators of the oxidase in vitro, cause exposure of p47-SH3, which has probably been masked by the C-terminal region of this protein in a resting state. The unmasking of p47-SH3 appears to play a crucial role in the assembly of the oxidase components, because p47-SH3 binds to both p22phox and p67phox but fails to interact with a mutant p22phox carrying a Pro-156-->Gln substitution in a proline-rich region, which has been found in a patient with chronic granulomatous disease. Based on the observations, we propose a signal-transducing mechanism whereby normally inaccessible SH3 domains become exposed upon activation to interact with their target proteins.
吞噬细胞NADPH氧化酶在静息细胞中处于休眠状态,在吞噬过程中被激活以产生超氧化物,超氧化物是杀菌性氧化剂的前体。活化的氧化酶是一种膜整合细胞色素b558复合物,由91 kDa(gp91phox)和22 kDa(p22phox)亚基以及两个胞质因子(p47phox和p67phox)组成,每个因子都含有两个Src同源3(SH3)结构域。在此我们表明,以谷胱甘肽S-转移酶融合蛋白形式表达的p47phox串联SH3结构域区域(p47-SH3)在无细胞系统中抑制超氧化物的产生,表明这些结构域参与了激活过程。此外,我们发现花生四烯酸和十二烷基硫酸钠,这两种体外氧化酶的激活剂,会导致p47-SH3暴露,在静息状态下该区域可能被该蛋白的C末端区域所掩盖。p47-SH3的暴露似乎在氧化酶成分的组装中起关键作用,因为p47-SH3与p22phox和p67phox都结合,但不能与在富含脯氨酸区域携带Pro-156→Gln替代的突变型p22phox相互作用,这种突变型p22phox已在一名慢性肉芽肿病患者中发现。基于这些观察结果,我们提出了一种信号转导机制,即通常无法接近的SH3结构域在激活后会暴露出来,以便与它们的靶蛋白相互作用。