Suppr超能文献

预测院外心脏骤停后的生存率:一种图形模型。

Predicting survival from out-of-hospital cardiac arrest: a graphic model.

作者信息

Larsen M P, Eisenberg M S, Cummins R O, Hallstrom A P

机构信息

Center for Evaluation of Emergency Medical Services, Emergency Medical Services Division, Seattle.

出版信息

Ann Emerg Med. 1993 Nov;22(11):1652-8. doi: 10.1016/s0196-0644(05)81302-2.

Abstract

STUDY OBJECTIVE

To develop a graphic model that describes survival from sudden out-of-hospital cardiac arrest as a function of time intervals to critical prehospital interventions.

PARTICIPANTS

From a cardiac arrest surveillance system in place since 1976 in King County, Washington, we selected 1,667 cardiac arrest patients with a high likelihood of survival: they had underlying heart disease, were in ventricular fibrillation, and had arrested before arrival of emergency medical services (EMS) personnel.

METHODS

For each patient, we obtained the time intervals from collapse to CPR, to first defibrillatory shock, and to initiation of advanced cardiac life support (ACLS).

RESULTS

A multiple linear regression model fitting the data gave the following equation: survival rate = 67%-2.3% per minute to CPR-1.1% per minute to defibrillation-2.1% per minute to ACLS, which was significant at P < .001. The first term, 67%, represents the survival rate if all three interventions were to occur immediately on collapse. Without treatment (CPR, defibrillatory shock, or definitive care), the decline in survival rate is the sum of the three coefficients, or 5.5% per minute. Survival rates predicted by the model for given EMS response times approximated published observed rates for EMS systems in which paramedics respond with or without emergency medical technicians.

CONCLUSION

The model is useful in planning community EMS programs, comparing EMS systems, and showing how different arrival times within a system affect survival rate.

摘要

研究目的

建立一个图形模型,该模型将院外心脏骤停后的生存率描述为与关键院前干预措施的时间间隔的函数。

参与者

从1976年起在华盛顿州金县实施的心脏骤停监测系统中,我们选取了1667名生存可能性较高的心脏骤停患者:他们患有潜在心脏病,处于心室颤动状态,且在紧急医疗服务(EMS)人员到达之前就已发生心脏骤停。

方法

对于每位患者,我们获取了从心脏骤停至开始心肺复苏(CPR)、至首次除颤电击以及至开始高级心脏生命支持(ACLS)的时间间隔。

结果

拟合数据的多元线性回归模型得出以下方程:生存率 = 67% - 至CPR每分钟下降2.3% - 至除颤每分钟下降1.1% - 至ACLS每分钟下降2.1%,该方程在P <.001时具有显著性。首项67%代表如果所有三项干预措施在心脏骤停后立即进行时的生存率。如果不进行治疗(CPR、除颤电击或确定性治疗),生存率的下降幅度为三个系数之和,即每分钟5.5%。该模型针对给定EMS响应时间预测的生存率与已发表的观察到的EMS系统的生存率相近,在这些系统中,护理人员在有或没有急救医疗技术员的情况下做出响应。

结论

该模型有助于规划社区EMS项目、比较EMS系统,并展示系统内不同到达时间如何影响生存率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验