Suppr超能文献

流体动力相互作用在微生物运动中的作用。

The role of hydrodynamic interaction in the locomotion of microorganisms.

作者信息

Ramia M, Tullock D L, Phan-Thien N

机构信息

Department of Mechanical Engineering, University of Sydney, New South Wales, Australia.

出版信息

Biophys J. 1993 Aug;65(2):755-78. doi: 10.1016/S0006-3495(93)81129-9.

Abstract

A general Boundary Element Method is presented and benchmarked with existing Slender Body Theory results and reflection solutions for the motion of spheres and slender bodies near plane boundaries. This method is used to model the swimming of a microorganism with a spherical cell body, propelled by a single rotating flagellum. The swimming of such an organism near a plane boundary, midway between two plane boundaries or in the vicinity of another similar organism, is investigated. It is found that only a small increase (less than 10%) results in the mean swimming speed of an organism swimming near and parallel to another identical organism. Similarly, only a minor propulsive advantage (again, less than 10% increase in mean swimming speed) is predicted when an organism swims very close and parallel to plane boundaries (such as a microscopic plate and (or) a coverslip, for example). This is explained in terms of the flagellar propulsive advantage derived from an increase in the ratio of the normal to tangential resistance coefficients of a slender body being offset by the apparently equally significant increase in the cell body drag. For an organism swimming normal to and toward a plane boundary, however, it is predicted that (assuming it is rotating its flagellum, relative to its cell body, with a constant angular frequency) the resulting swimming speed decreases asymptotically as the organism approaches the boundary.

摘要

本文提出了一种通用的边界元方法,并将其与现有的细长体理论结果以及球体和细长体在平面边界附近运动的反射解进行了基准测试。该方法用于模拟具有球形细胞体的微生物的游动,该微生物由单个旋转鞭毛驱动。研究了这种生物体在平面边界附近、两个平面边界中间或另一个类似生物体附近的游动情况。研究发现,当一个生物体在另一个相同生物体附近并与之平行游动时,其平均游动速度仅略有增加(小于10%)。同样,当一个生物体非常靠近并平行于平面边界(例如显微镜载玻片和(或)盖玻片)游动时,预测其推进优势也很小(平均游动速度同样仅增加不到10%)。这可以用细长体法向与切向阻力系数比值增加所带来的鞭毛推进优势来解释,该优势被细胞体阻力同样显著的增加所抵消。然而,对于一个垂直于并朝着平面边界游动的生物体,预测(假设其相对于细胞体以恒定角频率旋转鞭毛)当生物体接近边界时,其产生的游动速度会渐近降低。

相似文献

2
Swimming of flagellated microorganisms.鞭毛微生物的游动
Biophys J. 1976 Feb;16(2 Pt 1):151-70. doi: 10.1016/s0006-3495(76)85672-x.
4
Fluid mechanics of swimming bacteria with multiple flagella.具有多条鞭毛的游动细菌的流体力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042704. doi: 10.1103/PhysRevE.89.042704. Epub 2014 Apr 11.
8
A study of bacterial flagellar bundling.一项关于细菌鞭毛成束的研究。
Bull Math Biol. 2005 Jan;67(1):137-68. doi: 10.1016/j.bulm.2004.06.006.
9
Swimming in circles: motion of bacteria near solid boundaries.在圆周中游动:细菌在固体边界附近的运动
Biophys J. 2006 Jan 15;90(2):400-12. doi: 10.1529/biophysj.105.069401. Epub 2005 Oct 20.
10
Force-free swimming of a model helical flagellum in viscoelastic fluids.无应力螺旋形鞭毛在黏弹性流体中的自由游动。
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19516-20. doi: 10.1073/pnas.1113082108. Epub 2011 Nov 21.

引用本文的文献

1
Buoyancy-driven attraction of active droplets.浮力驱动的活性液滴吸引
J Fluid Mech. 2024 Feb 8;980. doi: 10.1017/jfm.2024.18. eCollection 2024 Feb 10.
2
Asymmetric bistability of chiral particle orientation in viscous shear flows.粘性剪切流中手性粒子取向的不对称双稳性。
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2310939120. doi: 10.1073/pnas.2310939120. Epub 2023 Oct 31.
5
Modelling Motility: The Mathematics of Spermatozoa.模拟运动:精子的数学原理
Front Cell Dev Biol. 2021 Jul 20;9:710825. doi: 10.3389/fcell.2021.710825. eCollection 2021.
6
Hydrodynamics and direction change of tumbling bacteria.翻滚细菌的流体动力学和方向变化。
PLoS One. 2021 Jul 20;16(7):e0254551. doi: 10.1371/journal.pone.0254551. eCollection 2021.
8
Passively parallel regularized stokeslets.被动平行正则 Stokeslets。
Philos Trans A Math Phys Eng Sci. 2020 Sep 4;378(2179):20190528. doi: 10.1098/rsta.2019.0528. Epub 2020 Aug 3.

本文引用的文献

2
Numerical model for the locomotion of spirilla.螺旋菌运动的数值模型。
Biophys J. 1991 Nov;60(5):1057-78. doi: 10.1016/S0006-3495(91)82143-9.
5
The helix as propeller of microorganisms.作为微生物推进器的螺旋结构。
J Biomech. 1971 Jan;4(1):73-83. doi: 10.1016/0021-9290(71)90017-0.
7
A note on the helical movement of micro-organisms.关于微生物螺旋运动的一则笔记。
Proc R Soc Lond B Biol Sci. 1971 Aug 3;178(1052):327-46. doi: 10.1098/rspb.1971.0068.
8
The propulsion of mucus by cilia.纤毛对黏液的推进作用。
Am Rev Respir Dis. 1988 Mar;137(3):726-41. doi: 10.1164/ajrccm/137.3.726.
10
A model for swimming unipolar spirilla.单极螺旋菌的游动模型。
J Theor Biol. 1989 Jul 21;139(2):201-18. doi: 10.1016/s0022-5193(89)80100-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验