Zhang J R, Andrus P K, Hall E D
Upjohn Company, Kalamazoo, MI 49001.
J Neurochem. 1993 Nov;61(5):1640-7. doi: 10.1111/j.1471-4159.1993.tb09798.x.
The levels of hydroxyl radicals and oxidized GSH have been examined as indices of oxidative stress in young (3 months), middle-aged (15 months), and old (20-24 months) gerbil brain hippocampus, cortex, and striatum. The hydroxyl radical stress was estimated by measuring the salicylate hydroxyl radical trapping products 2,5- and 2,3-dihydroxybenzoic acid. The stress was significantly higher in all three brain regions in middle-aged and old gerbils versus young animals (< or = 66.0%). Regional comparisons showed that the stress was significantly higher in cortex than in either the hippocampus or striatum of the middle-aged and old gerbils (< or = 32.0%). The ratio of oxidized to total GSH also increased progressively in middle-aged and old animals in all three brain regions (p < 0.05, < or = 41.1%), further indicating a general age-related increase in oxidative stress. Parallel to this age-related increase in oxidative stress, a significant, albeit slight (8%), decrease in neuronal number in hippocampal CA1 region was observed in both the middle-aged and old animals. Possible differences in antioxidant levels were also examined. Total GSH levels were similar across age groups (variance < 12%). However, the regional comparison showed that it was highest in striatum in all age groups. The levels of alpha-tocopherol (vitamin E) were significantly higher in the middle-aged and old animals in all three regions (< or = 70.4%). Vitamin E was highest in the hippocampus and the differences between the hippocampus and the cortex and striatum increased with age.(ABSTRACT TRUNCATED AT 250 WORDS)