Suppr超能文献

超氧化物歧化酶增强转基因苜蓿(紫花苜蓿)对冻害胁迫的耐受性。

Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.).

作者信息

McKersie B D, Chen Y, de Beus M, Bowley S R, Bowler C, Inzé D, D'Halluin K, Botterman J

机构信息

Department of Crop Science, University of Guelph, Ontario, Canada.

出版信息

Plant Physiol. 1993 Dec;103(4):1155-63. doi: 10.1104/pp.103.4.1155.

Abstract

Activated oxygen or oxygen free radicals have been implicated in a number of physiological disorders in plants including freezing injury. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide into O2 and H2O2 and thereby reduces the titer of activated oxygen molecules in the cell. To further examine the relationship between oxidative and freezing stresses, the expression of SOD was modified in transgenic alfalfa (Medicago sativa L.). The Mn-SOD cDNA from Nicotiana plumbaginifolia under the control of the cauliflower mosaic virus 35S promoter was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation. Two plasmid vectors, pMitSOD and pChlSOD, contained a chimeric Mn-SOD construct with a transit peptide for targeting to the mitochondria or one for targeting to the chloroplast, respectively. The putatively transgenic plants were selected for resistance to kanamycin and screened for neomycin phosphotransferase activity and the presence of an additional Mn-SOD isozyme. Detailed analysis of a set of four selected transformants indicated that some had enhanced SOD activity, increased tolerance to the diphenyl ether herbicide, acifluorfen, and increased regrowth after freezing stress. The F1 progeny of one line, RA3-ChlSOD-30, were analyzed by SOD isozyme activity, by polymerase chain reaction for the Mn-SOD gene, and by polymerase chain reaction for the neo gene. RA3-ChlSOD-30 had three sites of insertion of pChlSOD, but only one gave a functional Mn-SOD isozyme; the other two were apparently partial insertions. The progeny with a functional Mn-SOD transgene had more rapid regrowth following freezing stress than those progeny lacking the functional Mn-SOD transgene, suggesting that Mn-SOD serves a protective role by minimizing oxygen free radical production after freezing stress.

摘要

活性氧或氧自由基与包括冻害在内的多种植物生理紊乱有关。超氧化物歧化酶(SOD)催化超氧化物歧化为O₂和H₂O₂,从而降低细胞内活性氧分子的含量。为了进一步研究氧化应激与冻害胁迫之间的关系,在转基因苜蓿(紫花苜蓿)中对SOD的表达进行了修饰。在花椰菜花叶病毒35S启动子的控制下,将来自烟草的Mn-SOD cDNA通过根癌农杆菌介导的转化导入苜蓿。两个质粒载体pMitSOD和pChlSOD分别包含一个嵌合的Mn-SOD构建体,其带有用于靶向线粒体或叶绿体的转运肽。通过对卡那霉素的抗性筛选出推定的转基因植物,并检测新霉素磷酸转移酶活性以及是否存在额外的Mn-SOD同工酶。对一组四个选定的转化体进行详细分析表明,一些转化体的SOD活性增强,对二苯醚除草剂三氟羧草醚的耐受性增加,并且在冻害胁迫后的再生能力增强。对一个株系RA3-ChlSOD-30的F1后代进行了SOD同工酶活性分析、通过聚合酶链反应检测Mn-SOD基因以及通过聚合酶链反应检测新基因。RA3-ChlSOD-30有三个pChlSOD插入位点,但只有一个产生功能性的Mn-SOD同工酶;另外两个显然是部分插入。具有功能性Mn-SOD转基因的后代在冻害胁迫后的再生速度比缺乏功能性Mn-SOD转基因的后代更快,这表明Mn-SOD通过在冻害胁迫后使氧自由基产生最小化而起到保护作用。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验