Archer E K, Keegstra K
Department of Biology, Trinity College, Hartford, CT 06106.
Plant Mol Biol. 1993 Dec;23(6):1105-15. doi: 10.1007/BF00042345.
Protein import into chloroplasts requires a transit peptide, which interacts with the chloroplast transport apparatus and leads to translocation of the protein across the chloroplast envelope. While the amino acid sequences of many transit peptides are known, functional domains have been difficult to identify. Previous studies suggest that the carboxyl terminus of the transit peptide for ribulose bisphosphate carboxylase small subunit is important for both translocation across the chloroplast envelope and proper processing of the precursor protein. We dissected this region using in vitro mutagenesis, creating a set of mutants with small changes in primary structure predicted to cause alterations in secondary structure. The import behavior of the mutant proteins was assessed using isolated chloroplasts. Our results show that removal of a conserved arginine residue in this region results in impaired processing, but does not necessarily affect import rates. In contrast, substituting amino acids with low reverse turn or amphiphilic potential for other original residues affected import rate but not processing.
蛋白质导入叶绿体需要一个转运肽,该转运肽与叶绿体转运装置相互作用,并导致蛋白质穿过叶绿体包膜进行转运。虽然许多转运肽的氨基酸序列是已知的,但功能域却难以确定。先前的研究表明,核酮糖二磷酸羧化酶小亚基转运肽的羧基末端对于穿过叶绿体包膜的转运以及前体蛋白的正确加工都很重要。我们使用体外诱变技术剖析了该区域,创建了一组一级结构有微小变化的突变体,预计这些变化会导致二级结构改变。使用分离的叶绿体评估突变蛋白的导入行为。我们的结果表明,去除该区域中一个保守的精氨酸残基会导致加工受损,但不一定影响导入速率。相比之下,用低反向转折或两亲性潜力的氨基酸替代其他原始残基会影响导入速率,但不影响加工。