Suppr超能文献

巨型软体动物神经元的膜:电生理特性与静息电位的起源

The membrane of giant molluscan neurons: electrophysiologic properties and the origin of the resting potential.

作者信息

Marmor M F

机构信息

Stanford University School of Medicine, California.

出版信息

Prog Neurobiol. 1975;5(2):167-95. doi: 10.1016/0301-0082(75)90018-0.

Abstract

The molluscan neuron, because of its large size and accessibility, has been an important model for studying the electrophysiology of nerve cells. This review catalogs data about specific molluscan neurons, but the greater importance of this material is in the broad picture of how a neuronal membrane maintains internal potential and is responsive to changes in the environment. Electrical properties of the membrane. The mechanisms which contribute to the resting potential in molluscan neurons can be separated into ionic and metabolic components. When the electrogenic sodium pump is eliminated experimentally, the ionic component of the potential follows the constant field equation quite closely. Many of the "constants" and "parameters" which characterize the membrane of molluscan neurons are actually variables which depend upon temperature, ionic environment, and membrane potential. The evaluation of the electrical parameters is complicated by extensive infoldings of the somatic membrane, and by large axons which drain current from the soma. Most molluscan neurons have a very high specific membrane resistance and a correspondingly low potassium permeability. Membrane capacitance is close to the 1 microF/cm2 value which characterizes biological membranes. The current-voltage relation of molluscan neurons may be complicated by inward-going rectification, but if that is inhibited the I-V curve follows the prediction of either the constant field equation or a simple electrical model. Factors which modify membrane behavior. The resting potential of molluscan neurons is very sensitive to changes in temperature and Ko, through a combination of effects upon the electrogenic sodium pump, inward-going rectification, and the membrane "parameters". Inward-going rectification depends upon a rectifying K conductance, and can be eliminated by cold or the removal of Ko. Strong or prolonged currents have time-dependent effects upon the membrane, and excessive polarization leads to a "high conductance state". The underlying (non-rectifying) K permeability of the membrane is relatively insensitive to temperature and ionic changes, whereas the Na permeability increases with warming. Membrane resistance varies with both temperature and ions (because the I-V curve is sensitive to these conditions) but membrane capacitance is relatively insensitive to external factors. Electrogenic sodium transport. Sodium transport is electrogenic in molluscan neurons. It can be stimulated by warm temperatures and an excess of substrate (e.g. high Nai); it can be inhibited by cold, by an absence of substrate (e.g. low Ko), or by pharmacologic agents such as cyanide or ouabain.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

由于软体动物神经元体积大且易于获取,它一直是研究神经细胞电生理学的重要模型。本综述整理了有关特定软体动物神经元的数据,但这些材料更重要的意义在于呈现一幅关于神经元膜如何维持内部电位并对环境变化作出反应的全景图。膜的电学性质。促成软体动物神经元静息电位的机制可分为离子成分和代谢成分。当通过实验消除生电钠泵时,电位的离子成分相当紧密地遵循恒定场方程。许多表征软体动物神经元膜的“常数”和“参数”实际上是取决于温度、离子环境和膜电位的变量。体膜的广泛内褶以及从胞体引流电流的大轴突使电学参数的评估变得复杂。大多数软体动物神经元具有非常高的比膜电阻和相应较低的钾通透性。膜电容接近表征生物膜的1微法/平方厘米的值。软体动物神经元的电流-电压关系可能因内向整流而变得复杂,但如果这种整流被抑制,电流-电压曲线遵循恒定场方程或简单电学模型的预测。改变膜行为的因素。软体动物神经元的静息电位对温度和钾离子浓度(Ko)的变化非常敏感,这是通过对生电钠泵、内向整流和膜“参数”的综合影响实现的。内向整流取决于整流钾电导,可通过低温或去除钾离子来消除。强电流或持续电流对膜有时间依赖性影响,过度极化会导致“高电导状态”。膜的潜在(非整流)钾通透性对温度和离子变化相对不敏感,而钠通透性随温度升高而增加。膜电阻随温度和离子而变化(因为电流-电压曲线对这些条件敏感),但膜电容对外部因素相对不敏感。生电钠转运。在软体动物神经元中,钠转运是生电的。它可被高温和过量底物(如高细胞内钠离子浓度)刺激;可被低温、缺乏底物(如低钾离子浓度)或氰化物或哇巴因等药物抑制。(摘要截断于400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验