Suppr超能文献

从结构到过程,从器官到细胞:骨科生物力学中有限元分析的最新进展。

From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics.

作者信息

Huiskes R, Hollister S J

机构信息

Orthopaedic Research Laboratories, University of Michigan, Ann Arbor.

出版信息

J Biomech Eng. 1993 Nov;115(4B):520-7. doi: 10.1115/1.2895534.

Abstract

The introduction of finite element analysis (FEA) into orthopaedic biomechanics allowed continuum structural analysis of bone and bone-implant composites of complicated shapes (Huiskes and Chao, J. Biomechanics, Vol. 16, 1983, pp. 385-409). However, besides having complicated shapes, musculoskeletal tissues are hierarchical composites with multiple structural levels that adapt to their mechanical environment. Mechanical adaptation influences the success of many orthopaedic treatments, especially total joint replacements. Recent advances in FEA applications have begun to address questions concerning the optimality of bone structure, the processes of bone remodeling, the mechanics of soft hydrated tissues, and the mechanics of tissues down to the microstructural and cell levels. Advances in each of these areas, which have brought FEA from a continuum stress analysis tool to a tool which plays an ever-increasing role in the scientific understanding of tissue structure, adaptation, and the optimal design of orthopaedic implants, are reviewed.

摘要

将有限元分析(FEA)引入骨科生物力学,使得对复杂形状的骨骼及骨植入物复合材料进行连续体结构分析成为可能(Huiskes和Chao,《生物力学杂志》,第16卷,1983年,第385 - 409页)。然而,除了形状复杂外,肌肉骨骼组织是具有多个结构层次的分级复合材料,能适应其力学环境。力学适应性影响许多骨科治疗的成功,尤其是全关节置换术。有限元分析应用的最新进展已开始解决有关骨结构的最优性、骨重塑过程、软湿组织力学以及直至微观结构和细胞水平的组织力学等问题。本文综述了这些领域中的每一项进展,这些进展已使有限元分析从一种连续体应力分析工具转变为一种在科学理解组织结构、适应性以及骨科植入物的优化设计中发挥着越来越重要作用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验