Suppr超能文献

急诊科患者数量、住院时间和病情严重程度的时间序列预测。

Time series forecasts of emergency department patient volume, length of stay, and acuity.

作者信息

Tandberg D, Qualls C

机构信息

Department of Emergency Medicine, University of New Mexico, Albuquerque.

出版信息

Ann Emerg Med. 1994 Feb;23(2):299-306. doi: 10.1016/s0196-0644(94)70044-3.

Abstract

STUDY HYPOTHESIS

Time series analysis can provide accurate predictions of emergency department volume, length of stay, and acuity.

DESIGN

Prospective stochastic time series modeling.

SETTING

A university teaching hospital.

INTERVENTIONS

All patients seen during two sequential years had time of arrival, discharge, and acuity recorded in a computer database. Time series variables were formed for patients arriving per hour, length of stay, and acuity. Prediction models were developed from the year 1 data and included five types: raw observations, moving averages, mean values with moving averages, seasonal indicators with moving averages, and autoregressive integrated moving averages. Forecasts from each model were compared with observations from the first 25 weeks of year 2. Model accuracy was tested on residuals by autocorrelation functions, periodograms, linear regression, and confidence intervals of the variance.

RESULTS

There were 42,428 patients seen in year 1 and 44,926 in year 2. Large periodic variations in patient volume with time of day were found (P < .00001). The models based on arithmetic means or seasonal indices with a single moving average term gave the most accurate forecasts and explained up to 42% of the variation present in the year 2 test series. No time series model explained more that 1% of the variation in length of stay or acuity.

CONCLUSION

Time series analysis can provide powerful, accurate short-range forecasts of future ED volume. Simpler models performed best in this study. Time series forecasts of length of stay and patient acuity are not likely to contribute additional useful information for staffing and resource allocation decisions.

摘要

研究假设

时间序列分析能够准确预测急诊科就诊量、住院时间和病情严重程度。

设计

前瞻性随机时间序列建模。

地点

一所大学教学医院。

干预措施

连续两年内所有就诊患者的到达时间、出院时间和病情严重程度均记录在计算机数据库中。针对每小时到达的患者、住院时间和病情严重程度形成时间序列变量。根据第1年的数据开发预测模型,包括五种类型:原始观测值、移动平均值、带移动平均值的均值、带移动平均值的季节指标以及自回归积分移动平均值。将每个模型的预测结果与第2年第1个25周的观测值进行比较。通过自相关函数、周期图、线性回归和方差置信区间对残差进行模型准确性测试。

结果

第1年有42428例患者就诊,第2年有44926例。发现患者就诊量随一天中的时间有较大的周期性变化(P <.00001)。基于算术平均值或带有单个移动平均项的季节指数的模型给出了最准确的预测,解释了第2年测试系列中高达42%的变化。没有时间序列模型能解释住院时间或病情严重程度变化的1%以上。

结论

时间序列分析能够对未来急诊科就诊量进行有力、准确的短期预测。在本研究中,较简单的模型表现最佳。住院时间和患者病情严重程度的时间序列预测不太可能为人员配备和资源分配决策提供更多有用信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验