Leuchtag H R, Swihart J C
Biophys J. 1977 Jan;17(1):27-46. doi: 10.1016/S0006-3495(77)85625-7.
This is the first of two papers dealing with electrodiffusion theory (the Nernst-Planck equation coupled with Gauss's law) and its application to the current-voltage behavior of squid axon. New developments in the exact analysis of the steady-state electrodiffusion problem presented here include (a) a scale transformation that connects a given solution to an infinity of other solutions, suggesting the po-sibility of direct comparison of electrical data for membranes with different thicknesses and other properties; (b) a first-integral relation between the electric field and ion densities more general than analogous relations previously reported, and (c) an exact solution for the homovalent system, i.e., a membrane system permeated by various ion species of the same charge. The latter is a generalization of the known one-ion solution. The properties of the homovalent solution are investigated analytically and graphically. In particular we study the phase-plane curves, which reduce to the parabolas discussed by K. S. Cole in the special case in which the current-density parameter (a linear combination of the ionic current densities) is zero.
这是关于电扩散理论(将能斯特 - 普朗克方程与高斯定律相结合)及其在鱿鱼轴突电流 - 电压行为中的应用的两篇论文中的第一篇。本文中稳态电扩散问题精确分析的新进展包括:(a)一种尺度变换,它将给定的解与无数其他解联系起来,这表明有可能直接比较具有不同厚度和其他特性的膜的电学数据;(b)电场与离子密度之间的一个第一积分关系,它比先前报道的类似关系更具一般性;(c)同价体系的精确解,即由相同电荷的各种离子种类渗透的膜体系。后者是已知单离子解的推广。对同价解的性质进行了分析和图形研究。特别是我们研究了相平面曲线,在电流密度参数(离子电流密度的线性组合)为零的特殊情况下,这些曲线简化为K. S. 科尔所讨论的抛物线。