Kumar A R, Johnson D H
Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251-1892.
J Acoust Soc Am. 1993 Jun;93(6):3365-73. doi: 10.1121/1.405692.
Fractal intensity point processes--doubly stochastic point processes with a fractal waveform intensity process--are required to describe the discharge patterns recorded from the auditory and visual systems. The Fano factor--the ratio of the variance of the number of events in an interval to the mean of this number--captures the self-similar characteristics of the intensity via two quantities: fractal dimension and fractal time. The fractal dimension is the exponent of the asymptotic power law behavior of the Fano factor with interval duration. The fractal time delineates long-term fractal behavior from short-term characteristics of the data. The average rate and self-similarity parameter of the intensity process, absolute and relative refractory effects, and serial dependence all modify the fractal time. To generate fractal intensity point processes, stochastic fractal processes are derived by applying memoryless, nonlinear transformations to fractional Gaussian noise. The intensity's amplitude distribution in combination with the Fano factor form criteria to choose the transformation that best describes data.
分形强度点过程——具有分形波形强度过程的双随机点过程——被用于描述从听觉和视觉系统记录的放电模式。法诺因子——一个区间内事件数量的方差与该数量的均值之比——通过两个量来捕捉强度的自相似特征:分形维和分形时间。分形维是法诺因子随区间持续时间的渐近幂律行为的指数。分形时间将长期分形行为与数据的短期特征区分开来。强度过程的平均速率和自相似性参数、绝对和相对不应期效应以及序列依赖性都会改变分形时间。为了生成分形强度点过程,通过对分数高斯噪声应用无记忆非线性变换来推导随机分形过程。强度的幅度分布与法诺因子相结合形成标准,以选择最能描述数据的变换。