Heesterbeek J A, Metz J A
Centre for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands.
J Math Biol. 1993;31(5):529-39. doi: 10.1007/BF00173891.
In this note we show how to derive, by a mechanistic argument, an expression for the saturating contact rate of individual contacts in a population that mixes randomly. The main assumption is that the individual interaction times are typically short as compared to the time-scale of changes in, for example, individual-type, but that the interactions yet make up a considerable fraction of the time-budget of an individual. In special cases an explicit formula for the contact rate is obtained. The result is applied to mathematical epidemiology and marriage models.
在本笔记中,我们展示了如何通过一个机械论证来推导一个随机混合人群中个体接触的饱和接触率的表达式。主要假设是,与例如个体类型变化的时间尺度相比,个体相互作用时间通常较短,但这些相互作用在个体的时间预算中仍占相当大的比例。在特殊情况下,可得到接触率的显式公式。该结果应用于数学流行病学和婚姻模型。