Suppr超能文献

同质网络上 SIRS 传染病模型的几何分析。

A geometric analysis of the SIRS epidemiological model on a homogeneous network.

机构信息

Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.

Department of Mathematics, Technical University of Munich, Munich, Germany.

出版信息

J Math Biol. 2021 Sep 22;83(4):37. doi: 10.1007/s00285-021-01664-5.

Abstract

We study a fast-slow version of an SIRS epidemiological model on homogeneous graphs, obtained through the application of the moment closure method. We use GSPT to study the model, taking into account that the infection period is much shorter than the average duration of immunity. We show that the dynamics occurs through a sequence of fast and slow flows, that can be described through 2-dimensional maps that, under some assumptions, can be approximated as 1-dimensional maps. Using this method, together with numerical bifurcation tools, we show that the model can give rise to periodic solutions, differently from the corresponding model based on homogeneous mixing.

摘要

我们研究了在齐次图上通过矩闭合方法得到的 SIRS 传染病模型的快速-慢速版本。我们考虑到感染期比平均免疫持续时间短得多,使用 GSPT 来研究该模型。我们表明,动力学通过一系列快速和缓慢的流动来发生,可以通过二维图来描述,在某些假设下,这些二维图可以被近似为一维图。使用这种方法,结合数值分岔工具,我们表明该模型可以产生周期解,这与基于均匀混合的相应模型不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcb0/8458214/0614e01a039d/285_2021_1664_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验