Sheetz M P
Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710.
Annu Rev Biophys Biomol Struct. 1993;22:417-31. doi: 10.1146/annurev.bb.22.060193.002221.
The diffusion measurements of glycoproteins have further supported a fluid mosaic model of membrane structure, but the basis of the lower apparent diffusion coefficients in biological membranes remains incompletely understood. In the specific case of glycoproteins with a single alpha-helix spanning the membrane, studies indicate that the major frictional drag is in the external protein layer and not the bilayer. Only in the erythrocyte membrane does the internal protein layer clearly control the lateral diffusion coefficient of a glycoprotein with a large cytoplasmic domain. In cultured cells, the barriers to lateral displacements over long distances are primarily on the cytoplasmic surface and not in the external matrix. Active movements of individual or small groups of glycoproteins both forward and rearward on cells appear to result from the interactions with moving cytoskeletal structures. Membrane turnover as well as transient attachment to the cytoskeleton can produce dynamic domains in the membrane that would depend on motile activity. Recent technological advances enable simultaneous monitoring of specific cell functions and glycoprotein motility, making it possible to correlate membrane fluidity and active glycoprotein movements with cell function.
糖蛋白的扩散测量进一步支持了膜结构的流体镶嵌模型,但生物膜中表观扩散系数较低的原因仍未完全明了。对于具有单个跨膜α螺旋的糖蛋白的具体情况,研究表明主要的摩擦阻力存在于外部蛋白质层而非脂双层中。只有在红细胞膜中,内部蛋白质层才明显控制具有大细胞质结构域的糖蛋白的横向扩散系数。在培养细胞中,长距离横向位移的障碍主要在细胞质表面而非外部基质中。单个或小群糖蛋白在细胞上向前和向后的活跃运动似乎是与移动的细胞骨架结构相互作用的结果。膜更新以及与细胞骨架的短暂附着可在膜中产生动态区域,这将取决于运动活性。最近的技术进步使得能够同时监测特定细胞功能和糖蛋白运动性,从而有可能将膜流动性和活跃的糖蛋白运动与细胞功能联系起来。