Suppr超能文献

膜蛋白聚集体迁移率对聚集体大小的弱依赖性支持了扩散阻滞的粘性模型。

Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion.

作者信息

Kucik D F, Elson E L, Sheetz M P

机构信息

Birmingham Veterans Affairs Medical Center, Birmingham, AL and Department of Pathology, University of Alabama, Birmingham 35294, USA.

出版信息

Biophys J. 1999 Jan;76(1 Pt 1):314-22. doi: 10.1016/S0006-3495(99)77198-5.

Abstract

Proteins in plasma membranes diffuse more slowly than proteins inserted into artificial lipid bilayers. On a long-range scale (>250 nm), submembrane barriers, or skeleton fences that hinder long-range diffusion and create confinement zones, have been described. Even within such confinement zones, however, diffusion of proteins is much slower than predicted by the viscosity of the lipid. The cause of this slowing of diffusion on the micro scale has not been determined and is the focus of this paper. One way to approach this question is to determine the dependence of particle motion on particle size. Some current models predict that the diffusion coefficient of a membrane protein aggregate will depend strongly on its size, while others do not. We have measured the diffusion coefficients of membrane glycoprotein aggregates linked together by concanavalin A molecules bound to beads of various sizes, and also the diffusion coefficients of individual concanavalin A binding proteins. The measurements demonstrate at most a weak dependence of diffusion coefficient on aggregate size. This finding supports retardation by viscous effects, and is not consistent with models involving direct interaction of diffusing proteins with cytoskeletal elements.

摘要

质膜中的蛋白质扩散速度比插入人工脂质双层中的蛋白质慢。在长距离尺度(>250纳米)上,已经描述了阻碍长距离扩散并形成限制区的亚膜屏障或骨架围栏。然而,即使在这样的限制区内,蛋白质的扩散也比脂质粘度预测的要慢得多。这种微观尺度上扩散减慢的原因尚未确定,是本文的重点。解决这个问题的一种方法是确定粒子运动对粒子大小的依赖性。目前的一些模型预测,膜蛋白聚集体的扩散系数将强烈依赖于其大小,而其他模型则不然。我们测量了通过结合到各种大小珠子上的伴刀豆球蛋白A分子连接在一起的膜糖蛋白聚集体的扩散系数,以及单个伴刀豆球蛋白A结合蛋白的扩散系数。测量结果表明,扩散系数对聚集体大小的依赖性至多很弱。这一发现支持了粘性效应导致的迟缓,与涉及扩散蛋白与细胞骨架成分直接相互作用的模型不一致。

相似文献

2
Glycoprotein motility and dynamic domains in fluid plasma membranes.
Annu Rev Biophys Biomol Struct. 1993;22:417-31. doi: 10.1146/annurev.bb.22.060193.002221.
3
Lateral diffusion in an archipelago. Dependence on tracer size.
Biophys J. 1993 Apr;64(4):1053-62. doi: 10.1016/S0006-3495(93)81471-1.
4
Macromolecular diffusion in crowded solutions.
Biophys J. 1993 Sep;65(3):1155-61. doi: 10.1016/S0006-3495(93)81145-7.
6
Translational diffusion in lipid membranes beyond the Saffman-Delbruck approximation.
Biophys J. 2008 Mar 1;94(5):L41-3. doi: 10.1529/biophysj.107.126565. Epub 2008 Jan 11.
7
Time series analysis of particle tracking data for molecular motion on the cell membrane.
Bull Math Biol. 2009 Nov;71(8):1967-2024. doi: 10.1007/s11538-009-9434-6. Epub 2009 Aug 6.
8
A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic.
Biophys J. 1999 Dec;77(6):3163-75. doi: 10.1016/S0006-3495(99)77147-X.
9
Conditions for extreme sensitivity of protein diffusion in membranes to cell environments.
Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15002-7. doi: 10.1073/pnas.0606992103. Epub 2006 Sep 28.

引用本文的文献

4
An efficient approach to study membrane nano-inclusions: from the complex biological world to a simple representation.
RSC Adv. 2021 Mar 16;11(18):10962-10974. doi: 10.1039/d1ra00632k. eCollection 2021 Mar 10.
5
Cell patterning by secretion-induced plasma membrane flows.
Sci Adv. 2021 Sep 17;7(38):eabg6718. doi: 10.1126/sciadv.abg6718.
6
Diffusion of Lipid Nanovesicles Bound to a Lipid Membrane Is Associated with the Partial-Slip Boundary Condition.
Nano Lett. 2021 Oct 13;21(19):8503-8509. doi: 10.1021/acs.nanolett.1c02092. Epub 2021 Aug 17.
7
Avidity and surface mobility in multivalent ligand-receptor binding.
Nanoscale. 2021 Aug 7;13(29):12602-12612. doi: 10.1039/d1nr02083h. Epub 2021 Jul 14.
8
Self-Assembly of Polymer-Encased Lipid Nanodiscs and Membrane Protein Reconstitution.
J Phys Chem B. 2019 May 30;123(21):4562-4570. doi: 10.1021/acs.jpcb.9b03681. Epub 2019 May 16.
9
Impaired Glycine Receptor Trafficking in Neurological Diseases.
Front Mol Neurosci. 2018 Aug 21;11:291. doi: 10.3389/fnmol.2018.00291. eCollection 2018.
10
There Is No Simple Model of the Plasma Membrane Organization.
Front Cell Dev Biol. 2016 Sep 29;4:106. doi: 10.3389/fcell.2016.00106. eCollection 2016.

本文引用的文献

2
Single-particle tracking: applications to membrane dynamics.
Annu Rev Biophys Biomol Struct. 1997;26:373-99. doi: 10.1146/annurev.biophys.26.1.373.
4
Single-particle tracking: effects of corrals.
Biophys J. 1995 Aug;69(2):389-98. doi: 10.1016/S0006-3495(95)79911-8.
5
Glycoprotein motility and dynamic domains in fluid plasma membranes.
Annu Rev Biophys Biomol Struct. 1993;22:417-31. doi: 10.1146/annurev.bb.22.060193.002221.
7
Single-particle tracking: models of directed transport.
Biophys J. 1994 Nov;67(5):2110-9. doi: 10.1016/S0006-3495(94)80694-0.
9
Cellular plasma membrane domains.
Mol Membr Biol. 1995 Jan-Mar;12(1):89-91. doi: 10.3109/09687689509038501.
10
Fast axonal transport is required for growth cone advance.
Nature. 1993 Nov 4;366(6450):66-9. doi: 10.1038/366066a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验