Türkcan Silvan, Masson Jean-Baptiste
Physics of Biological Systems, Institut Pasteur, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR 3525, Paris, France ; Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale U696, Palaiseau, France.
Physics of Biological Systems, Institut Pasteur, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR 3525, Paris, France.
PLoS One. 2013 Dec 20;8(12):e82799. doi: 10.1371/journal.pone.0082799. eCollection 2013.
Membrane proteins move in heterogeneous environments with spatially (sometimes temporally) varying friction and with biochemical interactions with various partners. It is important to reliably distinguish different modes of motion to improve our knowledge of the membrane architecture and to understand the nature of interactions between membrane proteins and their environments. Here, we present an analysis technique for single molecule tracking (SMT) trajectories that can determine the preferred model of motion that best matches observed trajectories. The method is based on Bayesian inference to calculate the posteriori probability of an observed trajectory according to a certain model. Information theory criteria, such as the Bayesian information criterion (BIC), the Akaike information criterion (AIC), and modified AIC (AICc), are used to select the preferred model. The considered group of models includes free Brownian motion, and confined motion in 2nd or 4th order potentials. We determine the best information criteria for classifying trajectories. We tested its limits through simulations matching large sets of experimental conditions and we built a decision tree. This decision tree first uses the BIC to distinguish between free Brownian motion and confined motion. In a second step, it classifies the confining potential further using the AIC. We apply the method to experimental Clostridium Perfingens [Formula: see text]-toxin (CP[Formula: see text]T) receptor trajectories to show that these receptors are confined by a spring-like potential. An adaptation of this technique was applied on a sliding window in the temporal dimension along the trajectory. We applied this adaptation to experimental CP[Formula: see text]T trajectories that lose confinement due to disaggregation of confining domains. This new technique adds another dimension to the discussion of SMT data. The mode of motion of a receptor might hold more biologically relevant information than the diffusion coefficient or domain size and may be a better tool to classify and compare different SMT experiments.
膜蛋白在异质环境中移动,其摩擦力在空间上(有时在时间上)变化,并且与各种伙伴存在生化相互作用。可靠地区分不同的运动模式对于增进我们对膜结构的了解以及理解膜蛋白与其环境之间相互作用的本质非常重要。在这里,我们提出了一种用于单分子追踪(SMT)轨迹的分析技术,该技术可以确定最能匹配观察到的轨迹的首选运动模型。该方法基于贝叶斯推理,根据特定模型计算观察到的轨迹的后验概率。信息论标准,如贝叶斯信息准则(BIC)、赤池信息准则(AIC)和修正的AIC(AICc),用于选择首选模型。所考虑的模型组包括自由布朗运动以及在二阶或四阶势中的受限运动。我们确定了用于分类轨迹的最佳信息标准。我们通过匹配大量实验条件的模拟测试了其局限性,并构建了一个决策树。这个决策树首先使用BIC来区分自由布朗运动和受限运动。在第二步中,它使用AIC进一步对限制势进行分类。我们将该方法应用于实验性产气荚膜梭菌[公式:见正文]毒素(CP[公式:见正文]T)受体轨迹,以表明这些受体受到类似弹簧的势的限制。该技术的一种改编应用于沿轨迹在时间维度上的滑动窗口。我们将这种改编应用于由于限制域的解聚而失去限制的实验性CP[公式:见正文]T轨迹。这项新技术为SMT数据的讨论增添了另一个维度。受体的运动模式可能比扩散系数或域大小包含更多生物学相关信息,并且可能是分类和比较不同SMT实验的更好工具。