Suppr超能文献

酿酒酵母中的半胱氨酸生物合成通过转硫途径发生,该途径是通过酶的募集建立起来的。

Cysteine biosynthesis in Saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment.

作者信息

Cherest H, Thomas D, Surdin-Kerjan Y

机构信息

Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.

出版信息

J Bacteriol. 1993 Sep;175(17):5366-74. doi: 10.1128/jb.175.17.5366-5374.1993.

Abstract

The transsulfuration pathways allow the interconversion of homocysteine and cysteine with the intermediary formation of cystathionine. The various organisms studied up to now incorporate reduced sulfur into a three- or a four-carbon chain and use differently the transsulfuration pathways to synthesize sulfur amino acids. In enteric bacteria, the synthesis of cysteine is the first step of organic sulfur metabolism and homocysteine is derived from cysteine. Fungi are capable of incorporating reduced sulfur into a four-carbon chain, and they possess two operating transsulfuration pathways. By contrast, synthesis of cysteine from homocysteine is the only existing transsulfuration pathway in mammals. In Saccharomyces cerevisiae, genetic, phenotypic, and enzymatic study of mutants has allowed us to demonstrate that homocysteine is the first sulfur amino acid to be synthesized and cysteine is derived only from homocysteine (H. Cherest and Y. Surdin-Kerjan, Genetics 130:51-58, 1992). We report here the cloning of genes STR4 and STR1, encoding cystathionine beta-synthase and cystathionine gamma-lyase, respectively. The only phenotypic consequence of the inactivation of STR1 or STR4 is cysteine auxotrophy. The sequencing of gene STR4 has allowed us to compare all of the known sequences of transsulfuration enzymes and enzymes catalyzing the incorporation of reduced sulfur in carbon chains. These comparisons reveal a partition into two families based on sequence motifs. This partition mainly correlates with similarities in the catalytic mechanisms of these enzymes.

摘要

转硫途径可使同型半胱氨酸和半胱氨酸相互转化,并以胱硫醚作为中间产物。到目前为止,所研究的各种生物体将还原态硫掺入三碳或四碳链中,并以不同方式利用转硫途径来合成含硫氨基酸。在肠道细菌中,半胱氨酸的合成是有机硫代谢的第一步,同型半胱氨酸由半胱氨酸衍生而来。真菌能够将还原态硫掺入四碳链中,并且它们拥有两条起作用的转硫途径。相比之下,从同型半胱氨酸合成半胱氨酸是哺乳动物中唯一存在的转硫途径。在酿酒酵母中,对突变体的遗传学、表型和酶学研究使我们能够证明同型半胱氨酸是首先合成的含硫氨基酸,而半胱氨酸仅由同型半胱氨酸衍生而来(H. 谢雷斯特和Y. 苏尔丹 - 凯尔让,《遗传学》130:51 - 58,1992年)。我们在此报告分别编码胱硫醚β - 合酶和胱硫醚γ - 裂合酶的基因STR4和STR1的克隆。STR1或STR4失活的唯一表型后果是半胱氨酸营养缺陷型。基因STR4的测序使我们能够比较所有已知的转硫酶以及催化将还原态硫掺入碳链的酶的序列。这些比较揭示了基于序列基序可分为两个家族。这种划分主要与这些酶催化机制的相似性相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef60/206591/ae23fe0a9218/jbacter00059-0084-a.jpg

相似文献

5
Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi.
Mol Biochem Parasitol. 2012 Oct;185(2):114-20. doi: 10.1016/j.molbiopara.2012.07.009. Epub 2012 Aug 6.
6
Two pathways for cysteine biosynthesis in Leishmania major.
Biochem J. 2009 May 27;420(3):451-62. doi: 10.1042/BJ20082441.
8
Aspergillus nidulans genes encoding reverse transsulfuration enzymes belong to homocysteine regulon.
Curr Genet. 2009 Oct;55(5):561-70. doi: 10.1007/s00294-009-0269-3. Epub 2009 Aug 15.
10
Treatment-resistant schizophrenia: focus on the transsulfuration pathway.
Rev Neurosci. 2020 Jan 28;31(2):219-232. doi: 10.1515/revneuro-2019-0057.

引用本文的文献

1
Collective production of hydrogen sulfide gas enables budding yeast lacking MET17 to overcome their metabolic defect.
PLoS Biol. 2023 Dec 7;21(12):e3002439. doi: 10.1371/journal.pbio.3002439. eCollection 2023 Dec.
3
Rewiring of the protein-protein-metabolite interactome during the diauxic shift in yeast.
Cell Mol Life Sci. 2022 Oct 15;79(11):550. doi: 10.1007/s00018-022-04569-8.
4
Production of (2)-sakuranetin from (2)-naringenin in by strengthening methylation process and cell resistance.
Synth Syst Biotechnol. 2022 Aug 3;7(4):1117-1125. doi: 10.1016/j.synbio.2022.07.004. eCollection 2022 Dec.
5
Sensing and Signaling of Methionine Metabolism.
Metabolites. 2021 Jan 31;11(2):83. doi: 10.3390/metabo11020083.
6
Methionine at the Heart of Anabolism and Signaling: Perspectives From Budding Yeast.
Front Microbiol. 2019 Nov 15;10:2624. doi: 10.3389/fmicb.2019.02624. eCollection 2019.
7
The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.
9
Crystal Structures of Cystathionine β-Synthase from Saccharomyces cerevisiae: One Enzymatic Step at a Time.
Biochemistry. 2018 Jun 5;57(22):3134-3145. doi: 10.1021/acs.biochem.8b00092. Epub 2018 Apr 13.

本文引用的文献

1
On the Evolution of Biochemical Syntheses.
Proc Natl Acad Sci U S A. 1945 Jun;31(6):153-7. doi: 10.1073/pnas.31.6.153.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
Transformation of intact yeast cells treated with alkali cations.
J Bacteriol. 1983 Jan;153(1):163-8. doi: 10.1128/jb.153.1.163-168.1983.
6
One-step gene disruption in yeast.
Methods Enzymol. 1983;101:202-11. doi: 10.1016/0076-6879(83)01015-0.
7
Rapid and efficient cosmid cloning.
Nucleic Acids Res. 1981 Jul 10;9(13):2989-98. doi: 10.1093/nar/9.13.2989.
9
Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA.
Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110-4. doi: 10.1073/pnas.69.8.2110.
10
On earlier states of the biochemical system.
J Theor Biol. 1974 Mar;44(1):145-60. doi: 10.1016/s0022-5193(74)80035-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验