Suppr超能文献

同型半胱氨酸合成酶在酿酒酵母甲硫氨酸生物合成替代途径中的作用。

Role of homocysteine synthetase in an alternate route for methionine biosynthesis in Saccharomyces cerevisiae.

作者信息

Cherest H, Talbot G, Robichon-Szulmajster H

出版信息

J Bacteriol. 1970 May;102(2):448-61. doi: 10.1128/jb.102.2.448-461.1970.

Abstract

In vivo studies have shown that, in the absence of homoserine-O-transacetylase activity (locus met(2)), the C(4)-carbon moiety of ethionine is utilized (provided the ethionine resistance gene eth-2r is present) by methionine auxotrophs, except for met(8) mutants (homocysteine synthetase-deficient). Concomitant utilization of sulfur and methyl group from methylmercaptan or S-methylcysteine has been demonstrated. In the absence of added methylated intermediates, the methyl group of methionine formed from ethionine is derived from serine. In vitro studies with crude extracts of Saccharomyces cerevisiae have demonstrated that this synthesis of methionine occurs by the following reactions: CH(3)-SH + ethionine right harpoon over left harpoon methionine + C(2)H(5)SH and S-methylcysteine + ethionine right harpoon over left harpoon methionine + S-ethylcysteine. In the forward direction, the second product of the second reaction was shown to be S-ethylcysteine; this reaction has also been found reversible, leading to ethionine formation. Genetic and kinetic data have shown that homocysteine synthetase catalyzes these two reactions, at 0.3% of the rate it catalyzes direct homocysteine synthesis: O-Ac-homoserine + Na(2)S --> homocysteine + acetate. The three reactions are lost together in a met(8) mutant and are recovered to the same extent in spontaneous prototrophic revertants from this strain. Methionine-mediated regulation of enzyme synthesis affects the three activities and is modified to the same extent by the presence of the recessive allele (eth-2r) of the regulatory gene eth-2. Affinities of the enzyme for substrates of both types of reactions are of the same order of magnitude. Moreover, ethionine, the substrate of the second reaction, inhibits the third reaction, whereas O-acetyl-homoserine, the substrate of the third reaction, inhibits the second reaction. An enzymatic cleavage of S-methylcysteine, leading to methylmercaptan production, has been shown to occur in crude yeast extracts. It is concluded that the enzyme homocysteine synthetase participates in the two alternate pathways leading to methionine biosynthesis in S. cerevisiae, one involving O-acetyl-homoserine and H(2)S, the other involving the 4-carbon chain of ethionine and a mercaptyl donor. Participation of the two types of reactions catalyzed by homocysteine synthetase, in in vivo methionine synthesis, has been shown to occur in a met(2) partial revertant.

摘要

体内研究表明,在缺乏高丝氨酸 - O - 转乙酰酶活性(基因座met(2))的情况下,除了met(8)突变体(同型半胱氨酸合成酶缺陷型)外,甲硫氨酸营养缺陷型菌株可以利用乙硫氨酸的C(4) - 碳部分(前提是存在乙硫氨酸抗性基因eth - 2r)。已经证明可以同时利用甲硫醇或S - 甲基半胱氨酸中的硫和甲基。在没有添加甲基化中间体的情况下,由乙硫氨酸形成的甲硫氨酸的甲基来自丝氨酸。对酿酒酵母粗提物的体外研究表明,甲硫氨酸的这种合成通过以下反应发生:CH(3)-SH + 乙硫氨酸 ⇌ 甲硫氨酸 + C(2)H(5)SH 以及 S - 甲基半胱氨酸 + 乙硫氨酸 ⇌ 甲硫氨酸 + S - 乙基半胱氨酸。在正向反应中,第二个反应的第二个产物被证明是S - 乙基半胱氨酸;该反应也被发现是可逆的,会导致乙硫氨酸的形成。遗传和动力学数据表明,同型半胱氨酸合成酶催化这两个反应,其催化速率是催化直接合成同型半胱氨酸速率的0.3%:O - 乙酰高丝氨酸 + Na(2)S → 同型半胱氨酸 + 乙酸盐。这三个反应在met(8)突变体中同时缺失,并在该菌株的自发原养型回复突变体中以相同程度恢复。甲硫氨酸介导的酶合成调节影响这三种活性,并且调节基因eth - 2的隐性等位基因(eth - 2r)的存在会对其产生相同程度的修饰。该酶对两种反应底物的亲和力处于相同的数量级。此外,第二个反应的底物乙硫氨酸会抑制第三个反应,而第三个反应的底物O - 乙酰高丝氨酸会抑制第二个反应。已证明在酵母粗提物中会发生S - 甲基半胱氨酸的酶促裂解,导致甲硫醇的产生。得出的结论是,同型半胱氨酸合成酶参与了酿酒酵母中甲硫氨酸生物合成的两条替代途径,一条涉及O - 乙酰高丝氨酸和H(2)S,另一条涉及乙硫氨酸的4 - 碳链和一个巯基供体。同型半胱氨酸合成酶催化的两种类型反应在体内甲硫氨酸合成中的参与,已在met(2)部分回复突变体中得到证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10d7/247570/38caa20062e2/jbacter00381-0180-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验