Suppr超能文献

大肠杆菌异柠檬酸脱氢酶的动力学机制

Kinetic mechanism of Escherichia coli isocitrate dehydrogenase.

作者信息

Dean A M, Koshland D E

机构信息

Department of Biological Chemistry, Chicago Medical School, Illinois 60064-3095.

出版信息

Biochemistry. 1993 Sep 14;32(36):9302-9. doi: 10.1021/bi00087a007.

Abstract

The kinetic mechanism of the NADP-dependent isocitrate dehydrogenase of Escherichia coli was investigated using initial steady-state kinetic analyses. Kinetic coefficients, obtained using natural and alternative substrates with the wild-type and two mutant enzymes (S113L and S113N), suggest that the forward reaction [the oxidative decarboxylation of (2R,3S)-isocitrate by NADP] of the wild-type enzyme is a steady-state random mechanism, with catalysis more rapid than product release. The mechanism of the wild-type enzyme becomes rapid-equilibrium random when an alternative substrate [(2R)-malate or NAD] is used. The mutant enzymes always display rapid-equilibrium random kinetics, and for each enzyme the apparent dissociation constant of each substrate from the binary complex [Kia = E.A/(EA)] is similar to its apparent dissociation constant from the Michaelis complex [Ka = (EB).A/(EAB)], which suggests that the binding of one substrate is independent of the binding of the second. When the wild-type enzyme catalyzes the forward reaction, the apparent dissociation constant, KiIso, is equal to its equilibrium dissociation constant, KdIso, determined from equilibrium binding studies. However, the apparent dissociation constant of the cofactor, KiNADP, is far smaller than its equilibrium dissociation constant, KdNADP. This is consistent with the proposed mechanism, because simulations show that when catalysis is steady-state and product release is rate-limiting, KiNADP and KNADP will be far smaller than KdNADP, while KiIso and KIso remain similar to KdIso. Product inhibition studies support the steady-state random mechanism of the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

利用初始稳态动力学分析方法,对大肠杆菌中依赖烟酰胺腺嘌呤二核苷酸磷酸(NADP)的异柠檬酸脱氢酶的动力学机制进行了研究。使用野生型和两种突变酶(S113L和S113N)与天然及替代底物获得的动力学系数表明,野生型酶的正向反应[(2R,3S)-异柠檬酸被NADP氧化脱羧]是一种稳态随机机制,催化速度比产物释放速度快。当使用替代底物[(2R)-苹果酸或NAD]时,野生型酶的机制变为快速平衡随机机制。突变酶始终表现出快速平衡随机动力学,并且对于每种酶,每种底物从二元复合物中的表观解离常数[Kia = E.A/(EA)]与其从米氏复合物中的表观解离常数[Ka = (EB).A/(EAB)]相似,这表明一种底物的结合与第二种底物的结合无关。当野生型酶催化正向反应时,表观解离常数KiIso等于通过平衡结合研究确定的平衡解离常数KdIso。然而,辅因子的表观解离常数KiNADP远小于其平衡解离常数KdNADP。这与所提出的机制一致,因为模拟表明,当催化是稳态且产物释放是限速步骤时,KiNADP和KNADP将远小于KdNADP,而KiIso和KIso仍与KdIso相似。产物抑制研究支持野生型酶的稳态随机机制。(摘要截断于250字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验