Albrecht G H, Gelvin B R, Hartman S E
Department of Anatomy and Cell Biology, University of Southern California, Los Angeles 90033.
Am J Phys Anthropol. 1993 Aug;91(4):441-68. doi: 10.1002/ajpa.1330910404.
Simple ratios in which a measurement variable is divided by a size variable are commonly used but known to be inadequate for eliminating size correlations from morphometric data. Deficiencies in the simple ratio can be alleviated by incorporating regression coefficients describing the bivariate relationship between the measurement and size variables. Recommendations have included: 1) subtracting the regression intercept to force the bivariate relationship through the origin (intercept-adjusted ratios); 2) exponentiating either the measurement or the size variable using an allometry coefficient to achieve linearity (allometrically adjusted ratios); or 3) both subtracting the intercept and exponentiating (fully adjusted ratios). These three strategies for deriving size-adjusted ratios imply different data models for describing the bivariate relationship between the measurement and size variables (i.e., the linear, simple allometric, and full allometric models, respectively). Algebraic rearrangement of the equation associated with each data model leads to a correctly formulated adjusted ratio whose expected value is constant (i.e., size correlation is eliminated). Alternatively, simple algebra can be used to derive an expected value function for assessing whether any proposed ratio formula is effective in eliminating size correlations. Some published ratio adjustments were incorrectly formulated as indicated by expected values that remain a function of size after ratio transformation. Regression coefficients incorporated into adjusted ratios must be estimated using least-squares regression of the measurement variable on the size variable. Use of parameters estimated by any other regression technique (e.g., major axis or reduced major axis) results in residual correlations between size and the adjusted measurement variable. Correctly formulated adjusted ratios, whose parameters are estimated by least-squares methods, do control for size correlations. The size-adjusted results are similar to those based on analysis of least-squares residuals from the regression of the measurement on the size variable. However, adjusted ratios introduce size-related changes in distributional characteristics (variances) that differentially alter relationships among animals in different size classes.
常用的简单比率是将测量变量除以大小变量,但已知这种方法不足以消除形态测量数据中的大小相关性。通过纳入描述测量变量和大小变量之间二元关系的回归系数,可以缓解简单比率的不足。建议包括:1)减去回归截距以使二元关系通过原点(截距调整比率);2)使用异速生长系数对测量变量或大小变量进行指数运算以实现线性化(异速生长调整比率);或3)既减去截距又进行指数运算(完全调整比率)。这三种推导大小调整比率的策略意味着用于描述测量变量和大小变量之间二元关系的不同数据模型(即分别为线性、简单异速生长和完全异速生长模型)。与每个数据模型相关的方程的代数重排会得出正确制定的调整比率,其期望值是恒定的(即消除了大小相关性)。或者,可以使用简单代数来推导一个期望值函数,以评估任何提议的比率公式在消除大小相关性方面是否有效。如比率变换后期望值仍为大小的函数所示,一些已发表的比率调整公式有误。纳入调整比率的回归系数必须使用测量变量对大小变量的最小二乘回归来估计。使用任何其他回归技术(例如主轴或简约主轴)估计的参数会导致大小与调整后的测量变量之间存在残余相关性。通过最小二乘法估计参数的正确制定的调整比率确实可以控制大小相关性。大小调整后的结果与基于测量变量对大小变量回归的最小二乘残差分析的结果相似。然而,调整比率会引入与大小相关的分布特征(方差)变化,这些变化会不同程度地改变不同大小类动物之间的关系。