Suppr超能文献

计算罕见事件的概率:为何满足于近似值?

Calculating the probability of rare events: why settle for an approximation?

作者信息

Luft H S, Brown B W

机构信息

Institute for Health Policy Studies, School of Medicine, University of California, San Francisco 94109.

出版信息

Health Serv Res. 1993 Oct;28(4):419-39.

Abstract

OBJECTIVE

Health services researchers often need to compute the probability of observing a certain number of events when only a few such events are expected. Our objective is to show that the standard approaches (Poisson, binomial, and normal approximations) are inappropriate in such instances, and to suggest an alternative.

DATA SOURCES

Patients undergoing cholecystectomy (34,234) in 465 California hospitals in 1983 are used to demonstrate the biases arising from various methods of calculating the probability of observing a given number of deaths in each hospital. Similar data from other procedures and diagnoses with lower and higher mortality rates are also used for illustration.

STUDY DESIGN

The computational methods to derive probabilities using the Poisson, normal, simulation, and exact probabilities are discussed. Using a previously developed risk factor model, the probability of observing the actual number of deaths (or more) is calculated given the expectation of death for each patient in each hospital. Results for the four methods are compared, showing the types of random and systematic errors in the Poisson, normal, and simulation approaches.

DATA COLLECTION

Routinely collected hospital discharge abstract data were provided by the California Office of Statewide Planning and Development.

PRINCIPAL FINDINGS

The Poisson and normal approximations are often biased substantially in calculating upper-tail p-values, especially when the expected number of adverse outcomes is less than five. Simulations allow unbiased calculations, and the degree of random error can be made arbitrarily small given enough trials. Exact calculations using a simple recursive algorithm can be done very efficiently on either a mainframe or personal computer. For example, the whole set of cholecystectomy patients can be assessed in less than 90 seconds on a Macintosh.

CONCLUSIONS

Calculating the probability of observing a small number of events using standard approaches may result in substantial errors. The availability of a simple and inexpensive method of calculating these probabilities exactly can avoid these errors.

摘要

目的

卫生服务研究人员在预期仅有少数事件发生时,常常需要计算观察到特定数量事件的概率。我们的目的是表明,在这种情况下,标准方法(泊松、二项式和正态近似)并不适用,并提出一种替代方法。

数据来源

1983年加利福尼亚州465家医院中接受胆囊切除术的患者(34234例)被用于证明各种计算每家医院观察到给定数量死亡概率的方法所产生的偏差。来自其他死亡率较低和较高的手术及诊断的类似数据也用于说明。

研究设计

讨论了使用泊松、正态、模拟和精确概率来推导概率的计算方法。利用先前开发的风险因素模型,在已知每家医院每位患者死亡预期的情况下,计算观察到实际死亡数量(或更多)的概率。比较了四种方法的结果,展示了泊松、正态和模拟方法中随机和系统误差的类型。

数据收集

加利福尼亚州全州规划与发展办公室提供了常规收集的医院出院摘要数据。

主要发现

在计算上尾p值时,泊松和正态近似通常存在很大偏差,尤其是当不良结局的预期数量小于5时。模拟可进行无偏计算,并且给定足够的试验次数,随机误差程度可任意减小。使用简单递归算法进行的精确计算在大型主机或个人计算机上都能非常高效地完成。例如,在一台Macintosh计算机上不到90秒就能评估整套胆囊切除术患者的数据。

结论

使用标准方法计算观察到少数事件的概率可能会导致重大误差。有一种简单且低成本的精确计算这些概率的方法,可避免这些误差。

相似文献

8
Power and detectable risk of seven tests for standardized mortality ratios.
Am J Epidemiol. 1991 Jun 1;133(11):1191-7. doi: 10.1093/oxfordjournals.aje.a115831.
9
Control limits for p control charts with small subgroup sizes.小子组容量的p控制图的控制限
Qual Manag Health Care. 2007 Apr-Jun;16(2):123-9. doi: 10.1097/01.QMH.0000267449.32629.b1.

引用本文的文献

1
Meta-analysis of Censored Adverse Events.删失不良事件的荟萃分析
N Engl J Stat Data Sci. 2024 Oct;2(3):380-392. doi: 10.51387/24-nejsds62. Epub 2024 Jun 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验