Suppr超能文献

大肠杆菌RecA蛋白中核苷三磷酸(NTP)催化结构域的改变会减弱NTP水解,但不会影响联合分子的形成。

Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation.

作者信息

Rehrauer W M, Kowalczykowski S C

机构信息

Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611.

出版信息

J Biol Chem. 1993 Jan 15;268(2):1292-7.

PMID:8419331
Abstract

The hydrolysis of the nucleoside triphosphates, such as ATP or GTP, plays a central role in a variety of biochemical processes; but, in most cases, the specific mechanism of energy transduction is unclear. DNA strand exchange promoted by the Escherichia coli recA protein is normally associated with ATP hydrolysis. However, we advanced the idea that the observed ATP hydrolysis is not obligatorily linked to the exchange of DNA strands (Menetski, J. P., Bear, D. G., and Kowalczykowski, S. C. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 21-25); instead, ATP binding resulting in an allosteric transition to an active form of the recA protein is sufficient. In this paper, we extend this conclusion by introducing a mutation within a highly conserved region of the recA protein that, on the basis of sequence similarity, is proposed to interact with the pyrophosphate moiety of a bound NTP molecule. The conservative substitution of an arginine for the invariant lysine at position 72 reduces NTP hydrolysis by approximately 600-850-fold. This mutation does not significantly alter the capacity of the mutant recA (K72R) protein either to bind nucleotide cofactors and single-stranded DNA or to respond allosterically to nucleotide cofactor binding. Despite the dramatic attenuation in NTP hydrolysis, the recA (K72R) protein retains the ability to promote homologous pairing and extensive exchange of DNA strands (up to 1.5 kilobase pairs). These results both identify a component of the catalytic domain for NTP hydrolysis and demonstrate that the recA protein-promoted pairing and exchange of DNA strands mechanistically require the allosteric transition induced by NTP cofactor binding, but not the energy educed from NTP hydrolysis.

摘要

核苷三磷酸(如ATP或GTP)的水解在各种生化过程中起着核心作用;但在大多数情况下,能量转导的具体机制尚不清楚。大肠杆菌recA蛋白促进的DNA链交换通常与ATP水解相关。然而,我们提出这样的观点,即观察到的ATP水解并非必然与DNA链的交换相联系(梅内茨基,J.P.,贝尔,D.G.,以及科瓦尔奇科夫斯基,S.C.(1990年)《美国国家科学院院刊》87卷,21 - 25页);相反,ATP结合导致recA蛋白转变为活性形式的变构转换就足够了。在本文中,我们通过在recA蛋白的一个高度保守区域引入一个突变来扩展这一结论,基于序列相似性,该区域被认为与结合的NTP分子的焦磷酸部分相互作用。将第72位不变的赖氨酸保守性替换为精氨酸,可使NTP水解降低约600 - 850倍。该突变不会显著改变突变型recA(K72R)蛋白结合核苷酸辅因子和单链DNA的能力,也不会改变其对核苷酸辅因子结合的变构反应能力。尽管NTP水解显著减弱,但recA(K72R)蛋白仍保留促进同源配对和广泛DNA链交换(长达1.5千碱基对)的能力。这些结果既确定了NTP水解催化结构域的一个组成部分,又证明了recA蛋白促进的DNA链配对和交换在机制上需要由NTP辅因子结合诱导的变构转换,而不是由NTP水解产生的能量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验