Suppr超能文献

慢性完全睡眠剥夺对大鼠脑内中枢去甲肾上腺素能受体的影响。

Effects of chronic total sleep deprivation on central noradrenergic receptors in rat brain.

作者信息

Tsai L L, Bergmann B M, Perry B D, Rechtschaffen A

机构信息

Department of Psychiatry, University of Chicago, IL.

出版信息

Brain Res. 1993 Feb 5;602(2):221-7. doi: 10.1016/0006-8993(93)90686-h.

Abstract

The effect of chronic total sleep deprivation (TSD) on the regulation of central noradrenergic receptors was evaluated. Rats were subjected to 10 days of TSD by the disk-over-water method. As in previous TSD studies, these rats showed greater increases in food intake and energy expenditure and greater eventual declines in waking body temperature than their yoked-control (TSC) rats. After sacrifice, alpha 1-, alpha 2-, and beta-adrenoceptors were determined in 11 brain regions using radioligand binding assays with [3H]prazosin, [3H]rauwolscine, and 125I-iodocyanopindolol, respectively. Adrenoceptor density and affinity values were significantly different among TSD, TSC, and normally caged control rat groups only for the cerebellum, which showed higher alpha 2-binding density concomitant with lower affinity and lower beta-binding density than cage control rats. Such changes are attributable to apparatus or stimulus effects common to TSD and TSC rats. Given the absence of firm evidence for a TSD-induced downregulation of central noradrenergic receptors, the present results offer no support for the hypothesis of Siegel and Rogawski that a major function of paradoxical sleep is to upregulate these receptors.

摘要

评估了慢性完全睡眠剥夺(TSD)对中枢去甲肾上腺素能受体调节的影响。采用水盘法使大鼠经历10天的TSD。与之前的TSD研究一样,这些大鼠比它们的配对对照(TSC)大鼠表现出更大的食物摄入量和能量消耗增加,以及清醒体温最终更大幅度的下降。处死后,分别使用[3H]哌唑嗪、[3H]萝芙辛和125I-碘氰吲哚洛尔通过放射性配体结合测定法在11个脑区测定α1-、α2-和β-肾上腺素能受体。仅在小脑,TSD、TSC和正常笼养对照大鼠组之间的肾上腺素能受体密度和亲和力值存在显著差异,与笼养对照大鼠相比,小脑显示出更高的α2结合密度,同时亲和力较低且β结合密度较低。这种变化可归因于TSD和TSC大鼠共有的仪器或刺激效应。鉴于缺乏确凿证据表明TSD会导致中枢去甲肾上腺素能受体下调,本研究结果不支持西格尔和罗加夫斯基的假说,即异相睡眠的主要功能是上调这些受体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验