Suppr超能文献

半乳糖对酿酒酵母中己糖组成型转运的抑制作用。

Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae.

作者信息

Nevado J, Navarro M A, Heredia C F

机构信息

Instituto de Investigaciones Biomédicas del CSIC, Facultad de Medicina de la U.A.M. Arzobispo, Madrid, Spain.

出版信息

Yeast. 1993 Feb;9(2):111-9. doi: 10.1002/yea.320090202.

Abstract

The relationship between the pathways of glucose and galactose utilization in Saccharomyces cerevisiae has been studied. Galactose (which is transported and phosphorylated by inducible systems) is a strong inhibitor of the utilization of glucose, fructose and mannose (which have the same constitutive transport and phosphorylation systems). Conversely, all these three hexoses inhibit the utilization of galactose, though with poor efficiency. These cross-inhibitions only occur in yeast adapted to galactose or in galactose-constitutive mutants. The efficiency of galactose as inhibitor is even greater than the efficiencies of the other three hexoses to inhibit the utilization of each other. Phosphorylation is not involved in the inhibition and the transport of sugars is the affected step. The cross-inhibitions between galactose and either glucose, fructose or mannose do not implicate utilization of one hexose at the expense of the other, as it occurs in the mutual interactions between the latter three sugars. It seems that, by growing the yeast in galactose, a protein component is synthesized, or alternatively modified, that once bound to either galactose or any one of the other three hexoses (glucose, fructose or mannose), cross-interacts respectively with the constitutive or the inducible transport systems, impairing their function.

摘要

人们已经研究了酿酒酵母中葡萄糖和半乳糖利用途径之间的关系。半乳糖(通过诱导系统进行转运和磷酸化)是葡萄糖、果糖和甘露糖(具有相同的组成型转运和磷酸化系统)利用的强抑制剂。相反,这三种己糖都会抑制半乳糖的利用,不过效率较低。这些交叉抑制仅发生在适应半乳糖的酵母或半乳糖组成型突变体中。半乳糖作为抑制剂的效率甚至高于其他三种己糖相互抑制利用的效率。磷酸化不参与这种抑制作用,糖的转运是受影响的步骤。半乳糖与葡萄糖、果糖或甘露糖之间的交叉抑制并不意味着以牺牲一种己糖为代价来利用另一种己糖,就像后三种糖之间的相互作用那样。似乎通过在半乳糖中培养酵母,会合成或修饰一种蛋白质成分,该成分一旦与半乳糖或其他三种己糖(葡萄糖、果糖或甘露糖)中的任何一种结合,就会分别与组成型或诱导型转运系统发生交叉相互作用,从而损害它们的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验