Van Vleck L D, Boldman K G
Roman L. Hruska U.S. Meat Animal Research Center, ARS, USDA, Clay Center, NE 68933-0166.
J Anim Sci. 1993 Apr;71(4):836-44. doi: 10.2527/1993.714836x.
Transformation of multiple-trait records that undergo sequential selection can be used with derivative-free algorithms to maximize the restricted likelihood in estimation of covariance matrices as with derivative methods. Data transformation with appropriate parts of the Choleski decomposition of the current estimate of the residual covariance matrix results in mixed-model equations that are easily modified from round to round for calculation of the logarithm of the likelihood. The residual sum of squares is the same for transformed and untransformed analyses. Most importantly, the logarithm of the determinant of the untransformed coefficient matrix is an easily determined function of the Choleski decomposition of the residual covariance matrix and the determinant of the transformed coefficient matrix. Thus, the logarithm of the likelihood for any combination of covariance matrices can be determined from the transformed equations. Advantages of transformation are 1) the multiple-trait mixed-model equations are easy to set up, 2) the least squares part of the equations does not change from round to round, 3) right-hand sides change from round to round by constant multipliers, and 4) less memory is required. An example showed only a slight advantage of the transformation compared with no transformation in terms of solution time for each round (1 to 5%).
对经过顺序选择的多性状记录进行变换,可与无导数算法一起使用,以便在估计协方差矩阵时像使用导数方法一样最大化受限似然。利用当前残差协方差矩阵估计值的乔列斯基分解的适当部分进行数据变换,会产生混合模型方程,该方程可在各轮计算中轻松修改以计算似然对数。变换分析和未变换分析的残差平方和相同。最重要的是,未变换系数矩阵行列式的对数是残差协方差矩阵乔列斯基分解和变换系数矩阵行列式的一个易于确定的函数。因此,可从变换后的方程确定任何协方差矩阵组合的似然对数。变换的优点有:1)多性状混合模型方程易于建立;2)方程的最小二乘部分在各轮中不变;3)右侧在各轮中通过常数乘数变化;4)所需内存较少。一个例子表明,与未变换相比,变换在每轮求解时间方面仅具有轻微优势(1%至5%)。