Murre J M, Sturdy D P
Medical Research Council, Applied Psychology Unit, Cambridge, United Kingdom.
Biol Cybern. 1995 Nov;73(6):529-45. doi: 10.1007/BF00199545.
We develop a mathematical formalism or calculating connectivity volumes generated by specific topologies with various physical packing strategies. We consider four topologies (full, random, nearest-neighbor, and modular connectivity) and three physical models: (i) interior packing, where neurons and connection fibers are intermixed, (ii) sheeted packing where neurons are located on a sheet with fibers running underneath, and (iii) exterior packing where the neurons are located at the surfaces of a cube or sphere with fibers taking up the internal volume. By extensive cross-referencing of available human neuroanatomical data we produce a consistent set of parameters for the whole brain, the cerebral cortex, and the cerebellar cortex. By comparing these inferred values with those predicted by the expressions, we draw the following general conclusions for the human brain, cortex, and cerebellum: (i) Interior packing is less efficient than exterior packing (in a sphere). (ii) Fully and randomly connected topologies are extremely inefficient. More specifically we find evidence that different topologies and physical packing strategies might be used at different scales. (iii) For the human brain at a macro-structural level, modular topologies on an exterior sphere approach the data most closely. (iv) On a mesostructural level, laminarization and columnarization are evidence of the superior efficiency of organizing the wiring as sheets. (v) Within sheets, microstructures emerge in which interior models are shown to be the most efficient. With regard to interspecies similarities and differences we conjecture (vi) that the remarkable constancy of number of neurons per underlying square millimeter of cortex may be the result of evolution minimizing interneuron distance in grey matter, and (vii) that the topologies that best fit the human brain data should not be assumed to apply to other mammals, such as the mouse for which we show that a random topology may be feasible for the cortex.
我们开发了一种数学形式体系,用于计算由具有各种物理堆积策略的特定拓扑结构生成的连通性体积。我们考虑了四种拓扑结构(全连通、随机、近邻和模块化连通性)和三种物理模型:(i)内部堆积,其中神经元和连接纤维相互混合;(ii)片状堆积,其中神经元位于一层上,纤维在其下方延伸;(iii)外部堆积,其中神经元位于立方体或球体的表面,纤维占据内部体积。通过对现有的人类神经解剖学数据进行广泛的交叉引用,我们为整个大脑、大脑皮层和小脑皮层生成了一组一致的参数。通过将这些推断值与表达式预测的值进行比较,我们对人类大脑、皮层和小脑得出以下一般结论:(i)内部堆积(在球体中)不如外部堆积高效。(ii)全连通和随机连通的拓扑结构效率极低。更具体地说,我们发现有证据表明不同的拓扑结构和物理堆积策略可能在不同尺度上使用。(iii)对于宏观结构层面的人类大脑,外部球体上的模块化拓扑结构与数据最为接近。(iv)在中观结构层面,分层和柱状化证明了将布线组织成片状具有更高的效率。(v)在片层内,出现了微观结构,其中内部模型被证明是最有效的。关于种间的异同,我们推测(vi)每平方毫米皮层下神经元数量的显著恒定可能是进化使灰质中神经元间距离最小化的结果,并且(vii)不应假定最适合人类大脑数据的拓扑结构也适用于其他哺乳动物,例如小鼠,我们表明随机拓扑结构对于小鼠皮层可能是可行的。