Suppr超能文献

数字化乳腺X线摄影中乳腺肿块与正常组织的分类:多分辨率纹理分析

Classification of mass and normal breast tissue on digital mammograms: multiresolution texture analysis.

作者信息

Wei D, Chan H P, Helvie M A, Sahiner B, Petrick N, Adler D D, Goodsitt M M

机构信息

Department of Radiology, University of Michigan, Ann Arbor, USA.

出版信息

Med Phys. 1995 Sep;22(9):1501-13. doi: 10.1118/1.597418.

Abstract

We investigated the feasibility of using multiresolution texture analysis for differentiation of masses from normal breast tissue on mammograms. The wavelet transform was used to decompose regions of interest (ROIs) on digitized mammograms into several scales. Multiresolution texture features were calculated from the spatial gray level dependence matrices of (1) the original images at variable distances between the pixel pairs, (2) the wavelet coefficients at different scales, and (3) the wavelet coefficients up to certain scale and then at variable distances between the pixel pairs. In this study, 168 ROIs containing biopsy-proven masses and 504 ROIs containing normal parenchyma were used as the data set. The mass ROIs were randomly and equally divided into training and test groups along with corresponding normal ROIs from the same film. Stepwise linear discriminant analysis was used to select optimal features from the multiresolution texture feature space to maximize the separation of mass and normal tissue for all ROIs. We found that texture features at large pixel distances are important for the classification task. The wavelet transform can effectively condense the image information into its coefficients. With texture features based on the wavelet coefficients and variable distances, the area Az under the receiver operating characteristic curve reached 0.89 and 0.86 for the training and test groups, respectively. The results demonstrate that a linear discriminant classifier using the multiresolution texture features can effectively classify masses from normal tissue on mammograms.

摘要

我们研究了使用多分辨率纹理分析在乳腺钼靶片上区分肿块与正常乳腺组织的可行性。小波变换用于将数字化乳腺钼靶片上的感兴趣区域(ROI)分解为多个尺度。多分辨率纹理特征是根据以下内容的空间灰度依赖矩阵计算得出的:(1)像素对之间不同距离的原始图像;(2)不同尺度的小波系数;(3)直至特定尺度的小波系数,然后是像素对之间的不同距离。在本研究中,将168个经活检证实含有肿块的ROI和504个含有正常实质的ROI用作数据集。肿块ROI与来自同一胶片的相应正常ROI一起随机且均等地分为训练组和测试组。使用逐步线性判别分析从多分辨率纹理特征空间中选择最优特征,以使所有ROI中肿块与正常组织的分离最大化。我们发现大像素距离处的纹理特征对分类任务很重要。小波变换可以有效地将图像信息浓缩到其系数中。基于小波系数和可变距离的纹理特征,训练组和测试组的受试者操作特征曲线下面积Az分别达到0.89和0.86。结果表明,使用多分辨率纹理特征的线性判别分类器可以有效地在乳腺钼靶片上区分肿块与正常组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验