Suppr超能文献

使用自适应对比度增强和纹理分类在乳腺钼靶图像上自动检测乳腺肿块。

Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification.

作者信息

Petrick N, Chan H P, Wei D, Sahiner B, Helvie M A, Adler D D

机构信息

University of Michigan, Department of Radiology, Ann Arbor 48109-0030, USA.

出版信息

Med Phys. 1996 Oct;23(10):1685-96. doi: 10.1118/1.597756.

Abstract

This paper presents segmentation and classification results of an automated algorithm for the detection of breast masses on digitized mammograms. Potential mass regions were first identified using density-weighted contrast enhancement (DWCE) segmentation applied to single-view mammograms. Once the potential mass regions had been identified, multiresolution texture features extracted from wavelet coefficients were calculated, and linear discriminant analysis (LDA) was used to classify the regions as breast masses or normal tissue. In this article the overall detection results for two independent sets of 84 mammograms used alternately for training and test were evaluated by free-response receiver operating characteristics (FROC) analysis. The test results indicate that this new algorithm produced approximately 4.4 false positive per image at a true positive detection rate of 90% and 2.3 false positives per image at a true positive rate of 80%.

摘要

本文介绍了一种用于在数字化乳腺钼靶图像上检测乳腺肿块的自动算法的分割和分类结果。首先使用应用于单视图乳腺钼靶图像的密度加权对比度增强(DWCE)分割来识别潜在的肿块区域。一旦识别出潜在的肿块区域,就计算从小波系数中提取的多分辨率纹理特征,并使用线性判别分析(LDA)将这些区域分类为乳腺肿块或正常组织。在本文中,通过自由响应接收器操作特性(FROC)分析评估了交替用于训练和测试的两组独立的84幅乳腺钼靶图像的总体检测结果。测试结果表明,这种新算法在真阳性检测率为90%时,每张图像产生约4.4个假阳性,在真阳性率为80%时,每张图像产生2.3个假阳性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验