Suppr超能文献

对多个基因的启动子进行改组以优化工程酿酒酵母菌株中的木糖发酵。

Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain.

作者信息

Lu Chenfeng, Jeffries Thomas

机构信息

Department of Food Science, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Appl Environ Microbiol. 2007 Oct;73(19):6072-7. doi: 10.1128/AEM.00955-07. Epub 2007 Aug 10.

Abstract

We describe here a useful metabolic engineering tool, multiple-gene-promoter shuffling (MGPS), to optimize expression levels for multiple genes. This method approaches an optimized gene overexpression level by fusing promoters of various strengths to genes of interest for a particular pathway. Selection of these promoters is based on the expression levels of the native genes under the same physiological conditions intended for the application. MGPS was implemented in a yeast xylose fermentation mixture by shuffling the promoters for GND2 and HXK2 with the genes for transaldolase (TAL1), transketolase (TKL1), and pyruvate kinase (PYK1) in the Saccharomyces cerevisiae strain FPL-YSX3. This host strain has integrated xylose-metabolizing genes, including xylose reductase, xylitol dehydrogenase, and xylulose kinase. The optimal expression levels for TAL1, TKL1, and PYK1 were identified by analysis of volumetric ethanol production by transformed cells. We found the optimal combination for ethanol production to be GND2-TAL1-HXK2-TKL1-HXK2-PYK1. The MGPS method could easily be adapted for other eukaryotic and prokaryotic organisms to optimize expression of genes for industrial fermentation.

摘要

我们在此描述一种有用的代谢工程工具——多基因启动子改组(MGPS),用于优化多个基因的表达水平。该方法通过将不同强度的启动子与特定途径中感兴趣的基因融合,来实现优化的基因过表达水平。这些启动子的选择基于在与应用预期相同的生理条件下天然基因的表达水平。通过在酿酒酵母菌株FPL - YSX3中改组GND2和HXK2的启动子与转醛醇酶(TAL1)、转酮醇酶(TKL1)和丙酮酸激酶(PYK1)的基因,MGPS在酵母木糖发酵混合物中得以实施。该宿主菌株已整合了木糖代谢基因,包括木糖还原酶、木糖醇脱氢酶和木酮糖激酶。通过分析转化细胞的乙醇体积产量,确定了TAL1、TKL1和PYK1的最佳表达水平。我们发现乙醇生产的最佳组合为GND2 - TAL1 - HXK2 - TKL1 - HXK2 - PYK1。MGPS方法可轻松适用于其他真核生物和原核生物,以优化工业发酵基因的表达。

相似文献

1
Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain.
Appl Environ Microbiol. 2007 Oct;73(19):6072-7. doi: 10.1128/AEM.00955-07. Epub 2007 Aug 10.
10
Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.
PLoS One. 2018 Apr 5;13(4):e0195633. doi: 10.1371/journal.pone.0195633. eCollection 2018.

引用本文的文献

1
Engineering for efficient production of recombinant proteins.
Eng Microbiol. 2023 Oct 12;4(1):100122. doi: 10.1016/j.engmic.2023.100122. eCollection 2024 Mar.
2
An atlas of rational genetic engineering strategies for improved xylose metabolism in .
PeerJ. 2023 Nov 28;11:e16340. doi: 10.7717/peerj.16340. eCollection 2023.
3
Genetic engineering of complex feed enzymes into barley seed for direct utilization in animal feedstuff.
Plant Biotechnol J. 2023 Mar;21(3):560-573. doi: 10.1111/pbi.13972. Epub 2023 Jan 17.
4
Controlling gene expression with deep generative design of regulatory DNA.
Nat Commun. 2022 Aug 30;13(1):5099. doi: 10.1038/s41467-022-32818-8.
5
Promoter Engineering before and during the Synthetic Biology Era.
Biology (Basel). 2021 Jun 6;10(6):504. doi: 10.3390/biology10060504.
6
Predictive design of sigma factor-specific promoters.
Nat Commun. 2020 Nov 16;11(1):5822. doi: 10.1038/s41467-020-19446-w.
7
Bidirectional titration of yeast gene expression using a pooled CRISPR guide RNA approach.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18424-18430. doi: 10.1073/pnas.2007413117. Epub 2020 Jul 20.
8
CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis.
Nucleic Acids Res. 2019 Apr 23;47(7):e40. doi: 10.1093/nar/gkz072.
9
Co-generation of ethanol and l-lactic acid from corn stalk under a hybrid process.
Biotechnol Biofuels. 2018 Dec 18;11:331. doi: 10.1186/s13068-018-1330-6. eCollection 2018.
10
Condition-specific promoter activities in Saccharomyces cerevisiae.
Microb Cell Fact. 2018 Apr 10;17(1):58. doi: 10.1186/s12934-018-0899-6.

本文引用的文献

1
Comparison of multiple gene assembly methods for metabolic engineering.
Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):703-10. doi: 10.1007/s12010-007-9090-y.
2
Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis.
Nat Biotechnol. 2007 Mar;25(3):319-26. doi: 10.1038/nbt1290. Epub 2007 Mar 4.
3
Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2006 Aug;72(8):5266-73. doi: 10.1128/AEM.00530-06.
5
Tuning genetic control through promoter engineering.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12678-83. doi: 10.1073/pnas.0504604102. Epub 2005 Aug 25.
7
Genomic studies of transcription factor-DNA interactions.
Curr Opin Chem Biol. 2005 Feb;9(1):38-45. doi: 10.1016/j.cbpa.2004.12.008.
8
Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.
Appl Environ Microbiol. 2004 Nov;70(11):6816-25. doi: 10.1128/AEM.70.11.6816-6825.2004.
10
Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae.
Metab Eng. 2004 Jul;6(3):229-38. doi: 10.1016/j.ymben.2003.11.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验