Render C L, Hull K L, Harvey S
Department of Physiology, University of Alberta, Edmonton, Canada.
J Endocrinol. 1995 Dec;147(3):413-22. doi: 10.1677/joe.0.1470413.
It is well established that GH-like proteins and mRNA are present in extrapituitary tissues, but it is not known whether this reflects ectopic transcription of the pituitary GH gene or the expression of a closely related gene. This possibility was, therefore, further investigated. Immunoreactive (IR) GH-like proteins were readily measured by RIA and immunoblotting in hypothalamic and extrahypothalamic brain tissues of the domestic fowl, in which GH-IR was similar in size and antigenicity to pituitary GH. RT-PCR of mRNA from these brain tissues, with oligonucleotide primers spanning the coding region of pituitary GH cDNA, also generated cDNA fragments identical in size (689 bp) to pituitary GH cDNA. The amplified brain cDNA sequences contained BamH1 and Rsa1 cleavage sites similar to those located in pituitary GH cDNA. These cDNA sequences also hybridized with a cDNA probe for chicken GH cDNA, producing moieties of expected size that were identical to the hybridizing moieties in pituitary tissue. The nucleotide sequences of the PCR products generated from hypothalamic and extrahypothalamic brain tissues, determined by a modified cycle dideoxy chain termination method, were also identical to pituitary GH cDNA. This homology extended over 594 bp of the hypothalamic cDNA fragment (spanning nucleotides 65 to 659 of the pituitary GH cDNA and its coding region for amino acids 4 to 201) and 550 bp of the extrahypothalamic cDNA fragment (spanning nucleotides 76 to 626 of pituitary GH cDNA and its coding region for amino acids 8 to 190). These results clearly establish that pituitary GH mRNA sequences are transcribed in hypothalamic and extrahypothalamic tissues of the chicken brain, in which GH-IR proteins are abundantly located. However, as GH mRNA could not be detected in the chicken brain by Northern blotting, its turnover may be more rapid than in pituitary tissue. The local production of GH within the brain nevertheless suggests that it has paracrine roles in modulating neural or neuroendocrine function.