Suppr超能文献

蝾螈视网膜神经节细胞的光诱发突触兴奋与放电行为之间的关系。

The relationship between light-evoked synaptic excitation and spiking behaviour of salamander retinal ganglion cells.

作者信息

Diamond J S, Copenhagen D R

机构信息

Department of Physiology, University of California, San Francisco 94143-0730, USA.

出版信息

J Physiol. 1995 Sep 15;487 ( Pt 3)(Pt 3):711-25. doi: 10.1113/jphysiol.1995.sp020912.

Abstract
  1. Light-evoked input-output characteristics of ganglion cells in dark-adapted tiger salamander retina were studied in the slice preparation using patch-clamp techniques. Excitatory postsynaptic currents (EPSCs), isolated by blocking inhibitory inputs and evoked by a range of light stimulus intensities, were recorded under whole-cell voltage clamp. Spike responses, evoked by the same light intensities, were recorded extracellularly from the same cells using the cell-attached patch-clamp technique. 2. When N-methyl-D-aspartate (NMDA) receptor-mediated input was blocked by the competitive NMDA antagonist DL-2-amino-5-phosphonoheptanoate (AP7), light-evoked EPSC amplitude and peak firing rate were reduced at all light intensities. In both cases, the data obtained in the presence of AP7 scaled linearly to control data, indicating that NMDA and non-NMDA receptors are activated in the same proportions across the entire 2 log unit stimulus response range of these ganglion cells. 3. The relationship between light-evoked spike frequency and light-evoked EPSC amplitude was linear. The slope of the light-evoked synaptic current-spike frequency relationship was close to the slope of the injected current-spike frequency relationship, indicating that synaptic current and injected current drive spiking in a similar manner. The linearity of the synaptic current-spike frequency relationship was not compromised when NMDA input was blocked by AP7. 4. Light-evoked voltage responses, recorded under whole-cell current clamp, revealed that the average membrane potential during a spike response was depolarized only slightly with increased firing rate. Once the membrane potential surpassed spike threshold, it was maintained by the voltage-gated, spike-generating conductances at a depolarized plateau upon which action potentials were fired. The potential of this plateau varied only slightly with spike frequency. We conclude that the voltage control exerted by the spike-generating currents in ganglion cells prevents a substantial response-dependent decrease in the electrical driving force of the excitatory currents, obviating the need for the voltage-independent synaptic efficacy provided by the combination of NMDA and non-NMDA inputs.
摘要
  1. 利用膜片钳技术,在离体脑片标本上研究了暗适应虎螈视网膜神经节细胞的光诱发输入-输出特性。在全细胞电压钳记录条件下,通过阻断抑制性输入,并采用一系列光刺激强度诱发兴奋性突触后电流(EPSC)。使用细胞贴附式膜片钳技术,从同一细胞胞外记录由相同光强度诱发的动作电位反应。2. 当N-甲基-D-天冬氨酸(NMDA)受体介导的输入被竞争性NMDA拮抗剂DL-2-氨基-5-膦酰基庚酸(AP7)阻断时,在所有光强度下,光诱发的EPSC幅度和峰值放电频率均降低。在这两种情况下,存在AP7时获得的数据与对照数据呈线性关系,表明在这些神经节细胞整个2个对数单位的刺激反应范围内,NMDA和非NMDA受体以相同比例被激活。3. 光诱发的动作电位频率与光诱发的EPSC幅度之间呈线性关系。光诱发的突触电流-动作电位频率关系的斜率接近注入电流-动作电位频率关系的斜率,表明突触电流和注入电流以相似方式驱动动作电位发放。当AP7阻断NMDA输入时,突触电流-动作电位频率关系的线性并未受到影响。4. 在全细胞电流钳记录条件下记录的光诱发电压反应显示,动作电位反应期间的平均膜电位仅随放电频率增加而轻微去极化。一旦膜电位超过动作电位阈值,它就由电压门控的动作电位产生电导维持在一个去极化平台上,在此平台上发放动作电位。该平台的电位仅随动作电位频率略有变化。我们得出结论,神经节细胞中动作电位产生电流所施加的电压控制可防止兴奋性电流的电驱动力因反应增强而大幅降低,从而无需NMDA和非NMDA输入组合所提供的电压非依赖性突触效能。

相似文献

引用本文的文献

1
Efficient Coding by Midget and Parasol Ganglion Cells in the Human Retina.人视网膜中小侏儒和伞细胞的有效编码。
Neuron. 2020 Aug 19;107(4):656-666.e5. doi: 10.1016/j.neuron.2020.05.030. Epub 2020 Jun 12.
5
Disinhibitory recruitment of NMDA receptor pathways in retina.视网膜中NMDA受体通路的去抑制性募集
J Neurophysiol. 2014 Jul 1;112(1):193-203. doi: 10.1152/jn.00817.2013. Epub 2014 Apr 9.
7
NMDA receptor contributions to visual contrast coding.NMDA 受体对视觉对比编码的贡献。
Neuron. 2010 Jul 29;67(2):280-93. doi: 10.1016/j.neuron.2010.06.020.

本文引用的文献

1
The interpretation of potential changes in the spinal cord.脊髓潜在变化的解读。
J Physiol. 1938 Apr 14;92(3):276-321. doi: 10.1113/jphysiol.1938.sp003603.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验