Suppr超能文献

Effects of prenatal cocaine exposure in the retinal ganglion cell layer of the rat. A morphometric analysis.

作者信息

Silva-Araújo A, Silva M C, Abreu-Dias P, Tavares M A

机构信息

Department of Opthalmology, Largo Abel Salazar, Porto, Portugal.

出版信息

Mol Neurobiol. 1995 Aug-Dec;11(1-3):87-97. doi: 10.1007/BF02740687.

Abstract

To study the effects of prenatal cocaine-exposure on the developing retinal ganglion cell layer of the rat, female Wistar rats were administered subcutaneously (sc) cocaine hydrochloride (60 mg/kg body wt/d) or saline, or were not manipulated from gestational d 8-22. Male offspring were sacrificed at postnatal day 14 and 30. Radial semithin sections of epon-embedded flat mounts of the retinal quadrants were used to evaluate the following parameters along the centroperipheral axis: 1. Thickness of ganglion cells plus nerve fiber layer; 2. Nuclear size of ganglion cell layer neurons; and 3. Linear density (number per unit length) of ganglion cell layer neurons. To study the effects of cocaine and age on the retinal areas (temporal/nasal, dorsal/ventral), a repeated measures analysis of variance was used for each of the parameters mentioned above. All parameters were affected by prenatal exposure to cocaine. The thickness of the ganglion cell plus nerve fiber layer was reduced in cocaine-exposed rats in comparison with the saline group. Nuclear diameters were smaller in the cocaine than in the saline and control groups. The linear density was higher in the cocaine-exposed group than in the control and saline groups. The age-dependent decrease in the linear density from postnatal day 14-30 was higher in the cocaine-exposed rats than in the saline group; the decrease in the linear density along the centroperipheral axis found in both the control and saline groups was not significant in the cocaine-treated group. These morphometric findings strongly support the view that prenatal cocaine-exposure induces marked changes in the organization of the developing retina.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验