Suppr超能文献

一种基于信念网络的提醒系统的评估,该系统从效用反馈中学习。

Evaluation of a belief-network-based reminder system that learns from utility feedback.

作者信息

Wagner M M, Cooper G F

机构信息

Section of Medical Informatics, University of Pittsburgh, USA.

出版信息

Proc Annu Symp Comput Appl Med Care. 1995:666-72.

Abstract

PRETRIEVE is a belief-network-based, unsolicited information-retrieval system that performs machine learning based on user feedback. We report here on the document-ordering and document-retrieval performance of PRETRIEVE. We developed a test collection of 410 judgments of document utility in a simulated medical order-entry context. We characterized the validity of these judgments, which were elicited from domain experts, by measuring interrater and intrarater reproducibility. We developed a measure of the quality of document orderings similar to the ROC-curve analysis used to evaluate document-retrieval systems. We found that the ordering performance of the PRETRIEVE system was (1) substantially better than random, (2) somewhat less than ideal, and (3) superior to that of versions of the PRETRIEVE system that used relevance feedback instead of utility feedback. Under a set of assumptions, which we make explicit, we found that the documents retrieved by a version of PRETRIEVE that modeled time cost were of higher utility than those retrieved by a similar rule-based system.

摘要

PRETRIEVE是一个基于信念网络的主动信息检索系统,它根据用户反馈进行机器学习。我们在此报告PRETRIEVE的文档排序和文档检索性能。我们在模拟医疗订单输入环境中开发了一个包含410个文档效用判断的测试集。我们通过测量评分者间和评分者内的可重复性来表征这些从领域专家那里得到的判断的有效性。我们开发了一种类似于用于评估文档检索系统的ROC曲线分析的文档排序质量度量方法。我们发现PRETRIEVE系统的排序性能:(1)显著优于随机排序;(2)略逊于理想情况;(3)优于使用相关性反馈而非效用反馈的PRETRIEVE系统版本。在一组我们明确提出的假设下,我们发现,一个对时间成本进行建模的PRETRIEVE版本检索出的文档比一个类似的基于规则的系统检索出的文档具有更高的效用。

相似文献

5
New dynamical optimal learning for linear multilayer FNN.线性多层前馈神经网络的新型动态最优学习
IEEE Trans Neural Netw. 2004 Nov;15(6):1562-8. doi: 10.1109/TNN.2004.830801.
8
Development of a reminder system for general practitioners.
Stud Health Technol Inform. 1999;68:745-8.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验