Suppr超能文献

利用信念网络加强数据准确性存在差异的各站点之间的医学知识共享。

Using belief networks to enhance sharing of medical knowledge between sites with variations in data accuracy.

作者信息

Hogan W R, Wagner M M

机构信息

Department of Medicine, University of Pittsburgh, USA.

出版信息

Proc Annu Symp Comput Appl Med Care. 1995:218-22.

Abstract

Differences in data definition between sites are a known obstacle to sharing of reminder-system rule sets. We identify another data characteristic--data accuracy--with implications for sharing. We reviewed the literature on data accuracy and found reports of high error rates for many data classes used by reminder systems (e.g., problem lists). The accuracy of other, equally important, data classes had not been characterized. Wide variations in accuracy between sites has been observed, suggesting that such differences may pose a previously unrecognized barrier to sharing of reminder rules. We propose a belief-network model for encoding reminder rules that explicitly models site-specific data accuracy and we discuss how encoding knowledge in this format may lower the cost and effort required to share reminder rules between sites.

摘要

各站点之间数据定义的差异是共享提醒系统规则集的一个已知障碍。我们发现了另一个对共享有影响的数据特征——数据准确性。我们回顾了关于数据准确性的文献,发现提醒系统所使用的许多数据类别(如问题列表)存在高错误率的报告。其他同样重要的数据类别的准确性尚未得到描述。已观察到各站点之间在准确性方面存在很大差异,这表明此类差异可能对共享提醒规则构成了一个此前未被认识到的障碍。我们提出了一种用于编码提醒规则的信念网络模型,该模型明确对特定站点的数据准确性进行建模,并且我们讨论了以这种格式编码知识如何能够降低在各站点之间共享提醒规则所需的成本和工作量。

相似文献

9
Medical guidelines presentation and comparing with Electronic Health Record.医学指南展示及与电子健康记录的比较
Int J Med Inform. 2006 Mar-Apr;75(3-4):240-5. doi: 10.1016/j.ijmedinf.2005.07.016. Epub 2005 Sep 13.

引用本文的文献

本文引用的文献

4
9
A user-oriented validation method for clinical data.一种面向用户的临床数据验证方法。
Med Inform (Lond). 1986 Oct-Dec;11(4):317-28. doi: 10.3109/14639238608997655.
10
Quality of hospital data and DRGs.医院数据质量与疾病诊断相关分组
Scand J Soc Med. 1988;16(4):223-6. doi: 10.1177/140349488801600406.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验