Suppr超能文献

如何测量和预测蛋白质的摩尔吸收系数。

How to measure and predict the molar absorption coefficient of a protein.

作者信息

Pace C N, Vajdos F, Fee L, Grimsley G, Gray T

机构信息

Department of Medical Biochemistry and Genetics, Texas A&M University, College Station 77843-1114, USA.

出版信息

Protein Sci. 1995 Nov;4(11):2411-23. doi: 10.1002/pro.5560041120.

Abstract

The molar absorption coefficient, epsilon, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring epsilon for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:319-326] and is based on data from Edelhoch [1967, Biochemistry 6:1948-1954]). The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average epsilon values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the epsilon values in water, propanol, 6 M guanidine hydrochloride (GdnHCl), and 8 M urea have been measured. For Trp, the average epsilon values for the proteins are less than the epsilon values measured in any of the solvents. For Tyr, the average epsilon values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured epsilon values for 80 proteins, the epsilon at 280 nm of a folded protein in water, epsilon (280), can best be predicted with this equation: epsilon (280) (M-1 cm-1) = (#Trp)(5,500) + (#Tyr)(1,490) + (#cystine)(125) These epsilon (280) values are quite reliable for proteins containing Trp residues, and less reliable for proteins that do not. However, the Edelhoch method is convenient and accurate, and the best approach is to measure rather than predict epsilon.

摘要

蛋白质的摩尔吸光系数ε通常基于通过干重、氮或氨基酸分析测得的浓度。本文报道的研究表明,埃德尔霍赫方法是测定蛋白质ε的最佳方法。(吉尔和冯·希佩尔[1989年,《分析生物化学》182:319 - 326]描述了该方法,其基于埃德尔霍赫[1967年,《生物化学》6:1948 - 1954]的数据)。蛋白质在280nm处的吸光度取决于色氨酸、酪氨酸和胱氨酸(二硫键)的含量。已估算了18种特征明确的蛋白质样品中这些发色团的平均ε值,并测定了它们在水、丙醇、6M盐酸胍(GdnHCl)和8M尿素中的ε值。对于色氨酸,蛋白质的平均ε值小于在任何一种溶剂中测得的ε值。对于酪氨酸,蛋白质的平均ε值介于在6M GdnHCl中测得的值和在丙醇中测得的值之间。基于对80种蛋白质测得的116个ε值的样本,水中折叠蛋白质在280nm处的ε,即ε(280),可用以下公式最佳预测:ε(280)(M⁻¹cm⁻¹)=(色氨酸数量)(5,500)+(酪氨酸数量)(1,490)+(胱氨酸数量)(125) 对于含色氨酸残基的蛋白质,这些ε(280)值相当可靠,而对于不含色氨酸残基的蛋白质则可靠性较低。然而,埃德尔霍赫方法既方便又准确,最佳方法是测量而非预测ε。

相似文献

3
Spectrophotometric determination of protein concentration.蛋白质浓度的分光光度法测定。
Curr Protoc Protein Sci. 2004 Nov;Chapter 3:3.1.1-3.1.9. doi: 10.1002/0471140864.ps0301s33.
8
Photophysical properties of ricin.蓖麻毒素的光物理性质。
Photochem Photobiol. 2007 Sep-Oct;83(5):1149-56. doi: 10.1111/j.1751-1097.2007.00091.x.

引用本文的文献

本文引用的文献

3
Some optical properties of fetuin and glucagon.胎球蛋白和胰高血糖素的一些光学性质。
Biochim Biophys Acta. 1959 May;33(1):251-3. doi: 10.1016/0006-3002(59)90526-8.
7
Physical and conformational properties of staphylokinase in solution.溶液中葡萄球菌激酶的物理和构象性质
Biochim Biophys Acta. 1993 Feb 13;1161(2-3):244-8. doi: 10.1016/0167-4838(93)90220-l.
9
Energetics of ribonuclease T1 structure.核糖核酸酶T1结构的能量学
Biochemistry. 1994 Mar 22;33(11):3312-9. doi: 10.1021/bi00177a023.
10
Interactions of proteins with solvent components in 8 M urea.蛋白质在8M尿素中与溶剂成分的相互作用。
Arch Biochem Biophys. 1981 Sep;210(2):455-64. doi: 10.1016/0003-9861(81)90209-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验