Walther D, Eisenhaber F, Argos P
European Molecular Biology Laboratory, Heidelberg, Germany.
J Mol Biol. 1996 Jan 26;255(3):536-53. doi: 10.1006/jmbi.1996.0044.
The geometry of helix-helix packing in globular proteins is comprehensively analysed within the model of the superposition of two helix lattices which result from unrolling the helix cylinders onto a plane containing points representing each residue. The requirements for the helix geometry (the radius R, the twist angle omega and the rise per residue delta) under perfect match of the lattices are studied through a consistent mathematical model that allows consideration of all possible associations of all helix types (alpha-, pi- and 3(10)). The corresponding equations have three well-separated solutions for the interhelical packing angle, omega, as a function of the helix geometric parameters allowing optimal packing. The resulting functional relations also show unexpected behaviour. For a typically observed alpha-helix (omega = 99.1 degrees, delta = 1.45 A), the three optimal packing angles are omega a,b,c = -37.1 degrees, -97.4 degrees and +22.0 degrees with a periodicity of 180 degrees and respective helix radii Ra,b,c = 3.0 A, 3.5 A and 4.3 A. However, the resulting radii are very sensitive to variations in the twist angle omega. At omega triple = 96.9 degrees, all three solutions yield identical radii at delta = 1.45 A where Rtriple = 3.46 A. This radius is close to that of a poly(Ala) helix, indicating a great packing flexibility when alanine is involved in the packing core, and omega triple is close to the mean observed twist angle. In contrast, the variety of possible theoretical solutions is limited for the other two helix types. Besides the perfect matches, novel suboptimal "knobs into holes" hydrophobic packing patterns as a function of the helix radius are described. Alternative "knobs onto knobs" and mixed models can be applied in cases where salt bridges, hydrogen bonds, disulphide bonds and tight hydrophobic head-to-head contacts are involved in helix-helix associations. An analysis of the experimentally observed packings in proteins confirmed the conclusions of the theoretical model. Nonetheless, the observed alpha-helix packings showed deviations from the 180 degrees periodicity expected from the model. An investigation of the actual three-dimensional geometry of helix-helix packing revealed an explanation for the observed discrepancies where a decisive role was assigned to the defined orientation of the C alpha-C beta vectors of the side-chains. As predicted form the model, helices with different radii (differently sized side-chains in the packing core) were observed to utilize different packing cells (packing patterns). In agreement with the coincidence between Rtriple and the radius of a poly(Ala) helix, Ala was observed to show greatest propensity to build the packing core. The application of the helix lattice superposition model suggests that the packing of amino acid residues is best described by a "knobs into holes" scheme rather than "ridges into grooves". The various specific packing modes made salient by the model should be useful in protein engineering and design.
在球状蛋白质中,螺旋 - 螺旋堆积的几何结构在两个螺旋晶格叠加模型中得到了全面分析。这两个螺旋晶格是通过将螺旋圆柱体展开到一个包含代表每个残基的点的平面上得到的。通过一个一致的数学模型研究了晶格完美匹配时螺旋几何结构(半径(R)、扭转角(\omega)和每个残基的上升高度(\delta))的要求,该模型允许考虑所有螺旋类型((\alpha -)、(\pi -)和(3(10)))的所有可能组合。对于螺旋间堆积角(\omega),作为允许最佳堆积的螺旋几何参数的函数,相应的方程有三个明显分开的解。由此产生的函数关系也显示出意想不到的行为。对于典型观察到的(\alpha -)螺旋((\omega = 99.1^{\circ}),(\delta = 1.45\mathring{A})),三个最佳堆积角分别为(\omega_{a,b,c} = -37.1^{\circ})、(-97.4^{\circ})和( + 22.0^{\circ}),具有(180^{\circ})的周期性,相应的螺旋半径(R_{a,b,c} = 3.0\mathring{A})、(3.5\mathring{A})和(4.3\mathring{A})。然而,所得半径对扭转角(\omega)的变化非常敏感。在(\omega_{triple} = 96.9^{\circ})时,所有三个解在(\delta = 1.45\mathring{A})处产生相同的半径,此时(R_{triple} = 3.46\mathring{A})。这个半径接近聚(丙氨酸)螺旋的半径,表明当丙氨酸参与堆积核心时具有很大的堆积灵活性,并且(\omega_{triple})接近观察到的平均扭转角。相比之下,对于其他两种螺旋类型,可能的理论解的种类有限。除了完美匹配之外,还描述了作为螺旋半径函数的新型次优“旋钮插空”疏水堆积模式。在螺旋 - 螺旋缔合涉及盐桥、氢键、二硫键和紧密的疏水头对头接触的情况下,可以应用替代的“旋钮对旋钮”和混合模型。对蛋白质中实验观察到的堆积的分析证实了理论模型的结论。尽管如此,观察到的(\alpha -)螺旋堆积显示出与模型预期的(180^{\circ})周期性存在偏差。对螺旋 - 螺旋堆积的实际三维几何结构的研究揭示了对观察到的差异的解释,其中侧链的(C_{\alpha}-C_{\beta})向量的确定取向起了决定性作用。正如模型所预测的,观察到具有不同半径(堆积核心中侧链大小不同)的螺旋利用不同的堆积单元(堆积模式)。与(R_{triple})和聚(丙氨酸)螺旋半径一致,观察到丙氨酸显示出形成堆积核心的最大倾向。螺旋晶格叠加模型的应用表明,氨基酸残基的堆积最好用“旋钮插空”方案而不是“脊插槽”来描述。该模型突出的各种特定堆积模式在蛋白质工程和设计中应该是有用的。