Suppr超能文献

Structure and function of kidney water channels.

作者信息

Verkman A S, Shi L B, Frigeri A, Hasegawa H, Farinas J, Mitra A, Skach W, Brown D, Van Hoek A N, Ma T

机构信息

Department of Medicine, University of California, San Francisco, USA.

出版信息

Kidney Int. 1995 Oct;48(4):1069-81. doi: 10.1038/ki.1995.390.

Abstract

There is now firm evidence that water transporting proteins are expressed in renal and extrarenal tissues. In the kidney, proximal-type (CHIP28) and collecting duct (WCH-CD) water channels have been identified. We have cloned three kidney cDNAs with homology to the water channel (aquaporin) family, including a mercurial-insensitive water channel (MIWC), and a glycerol-transporting protein (GLIP) in collecting duct basolateral membrane. To elucidate water transporting mechanisms, a series of molecular and spectroscopic studies were carried out on purified CHIP28 protein and expressed chimeric and mutated CHIP28 cDNAs. The results indicate that CHIP28 transports water selectively, that CHIP28 monomers are assembled in membranes as tetramers, but that individual monomers function independently. Monomers contain multiple membrane-spanning helical domains. Based on these data and recent electron crystallography results, a model for water transport is proposed in which water moves through narrow pores located within individual CHIP28 monomers.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验