Zuker C S
Howard Hughes Medical Institute, University of California at San Diego, La Jolla 92093-0649, USA.
Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):571-6. doi: 10.1073/pnas.93.2.571.
Phototransduction systems in vertebrates and invertebrates share a great deal of similarity in overall strategy but differ significantly in the underlying molecular machinery. Both are rhodopsin-based G protein-coupled signaling cascades displaying exquisite sensitivity and broad dynamic range. However, light activation of vertebrate photoreceptors leads to activation of a cGMP-phosphodiesterase effector and the generation of a hyperpolarizing response. In contrast, activation of invertebrate photoreceptors, like Drosophila, leads to stimulation of phospholipase C and the generation of a depolarizing receptor potential. The comparative study of these two systems of phototransduction offers the opportunity to understand how similar biological problems may be solved by different molecular mechanisms of signal transduction. The study of this process in Drosophila, a system ideally suited to genetic and molecular manipulation, allows us to dissect the function and regulation of such a complex signaling cascade in its normal cellular environment. In this manuscript I review some of our recent findings and the strategies used to dissect this process.
脊椎动物和无脊椎动物的光转导系统在总体策略上有很大的相似性,但在潜在的分子机制上有显著差异。两者都是基于视紫红质的G蛋白偶联信号级联反应,具有极高的灵敏度和广泛的动态范围。然而,脊椎动物光感受器的光激活会导致cGMP磷酸二酯酶效应器的激活,并产生超极化反应。相比之下,无脊椎动物光感受器(如果蝇)的激活会导致磷脂酶C的刺激,并产生去极化的受体电位。对这两种光转导系统的比较研究提供了一个机会,来了解相似的生物学问题是如何通过不同的信号转导分子机制来解决的。在果蝇中研究这个过程,果蝇是一个非常适合进行遗传和分子操作的系统,这使我们能够在其正常细胞环境中剖析如此复杂的信号级联反应的功能和调控。在本手稿中,我回顾了我们最近的一些发现以及用于剖析这个过程的策略。