Sigfridsson K, Young S, Hansson O
Department of Biochemistry and Biophysics, Lundberg Laboratory, Göteborg University, Sweden.
Biochemistry. 1996 Jan 30;35(4):1249-57. doi: 10.1021/bi9520141.
A series of plastocyanin mutants have been constructed by site-directed mutagenesis and expressed in Escherichia coli to elucidate the interaction between plastocyanin and photosystem 1 in the photosynthetic electron-transfer chain. Leu-12 has been replaced with alanine, asparagine, glutamate, and lysine, while Tyr-83 has been exchanged for histidine, phenylalanine, and leucine. Phe-35, Asp-42, and Gln-88 have been mutated to tyrosine, asparagine, and glutamate, respectively. The mutations that have been introduced do not seem to place any strain on the tertiary structure according to optical absorption and electron paramagnetic resonance (EPR) spectroscopic studies. However, there are changes in the reduction potential for the Leu-12 mutants that cannot be accounted for by electrostatic interactions alone. For some of the mutants, the pI shifts, in accordance with the changes in the number of titratable groups. Only the Leu-12 mutants show any major change in their photosystem 1 kinetics, while the mutants in the acidic patch show minor changes, suggesting that both the hydrophobic and acidic patches make contact with photosystem 1 but that the electron transfer occurs at the hydrophobic interface, most probably via the His-87 residue. The kinetics are best described with a model in which a rate-limiting conformational change occurs in the plastocyanin-photosystem 1 complex [Bottin, H., & Mathis, P. (1985) Biochemistry 24, 6453-6460; Sigfridsson, K., Hansson, O., Karlsson, B.G., Baltzer L., Nordling, M., & Lundberg, L. G. (1995) Biochim. Biophys. Acta 1228, 28-36], where the changes observed are attributed to changes in the dynamics within the electron-transfer complex.
通过定点诱变构建了一系列质体蓝素突变体,并在大肠杆菌中表达,以阐明质体蓝素与光合电子传递链中光系统1之间的相互作用。亮氨酸-12已被丙氨酸、天冬酰胺、谷氨酸和赖氨酸取代,而酪氨酸-83已被组氨酸、苯丙氨酸和亮氨酸替换。苯丙氨酸-35、天冬氨酸-42和谷氨酰胺-88分别已突变为酪氨酸、天冬酰胺和谷氨酸。根据光吸收和电子顺磁共振(EPR)光谱研究,引入的突变似乎并未对三级结构造成任何张力。然而,亮氨酸-12突变体的还原电位发生了变化,这不能仅由静电相互作用来解释。对于一些突变体,根据可滴定基团数量的变化,其等电点发生了偏移。只有亮氨酸-12突变体在其光系统1动力学上表现出任何重大变化,而酸性区域的突变体表现出微小变化,这表明疏水区域和酸性区域都与光系统1接触,但电子转移发生在疏水界面,很可能是通过组氨酸-87残基。动力学最好用一个模型来描述,即在质体蓝素-光系统1复合物中发生限速构象变化[博廷,H.,& 马西斯,P.(1985年)《生物化学》24,6453 - 6460;西格弗里德松,K.,汉松,O.,卡尔松,B.G.,巴尔策尔,L.,诺德林,M.,& 伦德伯格,L.G.(1995年)《生物化学与生物物理学报》1228,28 - 36],其中观察到的变化归因于电子转移复合物内动力学的变化。