Suppr超能文献

微生物学中的扫描探针显微镜技术。

Scanning probe microscopy in microbiology.

作者信息

Firtel M, Beveridge T J

机构信息

Department of Microbiology, Faculty of Medicine, University of Toronto, Ontario, Canada.

出版信息

Micron. 1995;26(4):347-62. doi: 10.1016/0968-4328(95)00012-7.

Abstract

Scanning probe microscopy (SPM) is emerging as an important alternative to electron microscopy as a technique for analyzing submicron details on biological surfaces. Microbiological specimens such as viruses, bacteriophages, and ordered bacterial surface layers and membranes have played an important role in the development of scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) in cellular and molecular biology. Early STM studies involving metal-coated bacteriophage T4 polyheads, Methanospirillum hungatei, and Deinococcus radiodurans HPI layer clearly demonstrated that resolution was comparable to TEM on similarly prepared specimens and only limited by metal graininess. However, except for thin films or layers, novel biological information has been difficult to obtain since imaging native surfaces of such biomaterials as proteins or nucleic acids by STM proved to be unreliable. With the development of atomic force microscopes, which allow imaging of similar native structures, SPM applications have widened to include straightforward surface structure analysis, analysis of surface elastic and inelastic properties, bonding force measurements between molecules, and micro-manipulations of such individual molecules as DNA. AFM images have progressed from relatively crude representations of specimen topography to nanometer scale representations of native hydrated surfaces. It appears from the study of microbiological specimens that direct visualization of dynamic molecular events or processes may soon become a reality.

摘要

扫描探针显微镜(SPM)作为一种分析生物表面亚微米细节的技术,正逐渐成为电子显微镜的重要替代方法。诸如病毒、噬菌体以及有序细菌表面层和膜等微生物标本,在细胞和分子生物学领域扫描隧道显微镜(STM)和原子力显微镜(AFM)的发展过程中发挥了重要作用。早期涉及金属包覆的噬菌体T4多面体、Hungate甲烷螺菌和耐辐射球菌HPI层的STM研究清楚地表明,在类似制备的标本上,其分辨率与透射电子显微镜(TEM)相当,且仅受金属颗粒度的限制。然而,除了薄膜或层状结构外,由于事实证明通过STM对蛋白质或核酸等生物材料的天然表面进行成像不可靠,因此很难获得新的生物学信息。随着原子力显微镜的发展,其能够对类似的天然结构进行成像,SPM的应用范围得以拓宽,包括直接的表面结构分析、表面弹性和非弹性特性分析、分子间结合力测量以及对DNA等单个分子的微操作。AFM图像已从相对粗糙的标本形貌表征发展到天然水合表面的纳米级表征。从对微生物标本的研究来看,动态分子事件或过程的直接可视化可能很快会成为现实。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验