Xu W, Mulhern P J, Blackford B L, Jericho M H, Firtel M, Beveridge T J
Physics Department, Dalhousie University, Halifax, Nova Scotia, Canada.
J Bacteriol. 1996 Jun;178(11):3106-12. doi: 10.1128/jb.178.11.3106-3112.1996.
We describe a technique for probing the elastic properties of biological membranes by using an atomic force microscope (AFM) tip to press the biological material into a groove in a solid surface. A simple model is developed to relate the applied force and observed depression distance to the elastic modulus of the material. A measurement on the proteinaceous sheath of the archaebacterium Methanospirillum hungatei GP1 gave a Young's modulus of 2 x 10(10) to 4 x 10(10) N/m2. The measurements suggested that the maximum sustainable tension in the sheath was 3.5 to 5 N/m. This finding implied a maximum possible internal pressure for the bacterium of between 300 and 400 atm. Since the cell membrane and S-layer (wall) which surround each cell should be freely permeable to methane and since we demonstrate that the sheath undergoes creep (expansion) with pressure increase, it is possible that the sheath acts as a pressure regulator by stretching, allowing the gas to escape only after a certain pressure is reached. This creep would increase the permeability of the sheath to diffusible substances.
我们描述了一种通过使用原子力显微镜(AFM)探针将生物材料压入固体表面的凹槽中来探测生物膜弹性特性的技术。建立了一个简单的模型,将施加的力和观察到的压陷距离与材料的弹性模量联系起来。对Hungatei GP1甲烷螺菌的蛋白质鞘进行的测量得出杨氏模量为2×10¹⁰至4×10¹⁰N/m²。测量结果表明,鞘中的最大可持续张力为3.5至5 N/m。这一发现意味着该细菌的最大可能内部压力在300至400个大气压之间。由于围绕每个细胞的细胞膜和S层(壁)应该对甲烷具有自由渗透性,并且由于我们证明鞘会随着压力增加而发生蠕变(膨胀),因此鞘有可能通过拉伸起到压力调节器的作用,仅在达到一定压力后才允许气体逸出。这种蠕变会增加鞘对可扩散物质的渗透性。