Suppr超能文献

[两栖动物的水稳态:血管紧张素和水调节蛋白]

[Water homeostasis in amphibia: vasotocin and hydrins].

作者信息

Acher R

机构信息

Laboratoire de Chimie Biologique, Université de Paris VI.

出版信息

C R Seances Soc Biol Fil. 1995;189(2):199-214.

PMID:8590219
Abstract

Water homeostasis is ensured in vertebrates through neuroendocrine reflexes involving hormones and specialized exchange organs depending whether the habitat is freshwater, sea or land. Amphibians have a development recapitulating two adaptive programs, first a freshwater fish program as a tadpole, then a land vertebrate program as an adult. The second, however, is imperfect because of the great evaporative water loss through the skin when the animal is in the open air. This loss must be compensated by water reabsorption through the nephron, the urinary bladder and mainly by water uptake through the skin. Water reabsorption by the nephron is not as efficient as in higher vertebrates but water uptake through the skin is crucial because adult amphibians, like tadpoles, do not drink. Adaptation occurred at the level of three organs, nephron, urinary bladder and skin whose permeability is under control of specific hormones. Aside from vasotocin, active on these three organs, differential maturation of provasotocin led to processing-arrested intermediates, namely vasotocinyl-Gly in virtually all anuran amphibians and vasotocinyl-Gly-Lys-Arg in Xenopus laevis. These intermediates result from a down regulation of the alpha-amidating enzyme or carboxypeptidase E, respectively. They have been termed hydrin 2 and hydrin 1 because they are endowed with hydroosmotic properties equal or superior to those of vasotocin on the skin and the bladder. However, in contrast to vasotocin, they are devoid of antidiuretic activity. Adaptive evolution has created, aside from the osmoregulatory vasotocin-nephron system that was preserved in strictly terrestrial nonmammalian tetrapods, additional functions such as the hydrin-skin and the hydrin-bladder rehydrations with specific messengers and organs. The adjuvant systems disappeared in true land vertebrates because the vasotocin-nephron system became more efficient.

摘要

脊椎动物通过涉及激素和专门交换器官的神经内分泌反射来确保水稳态,这取决于其栖息地是淡水、海洋还是陆地。两栖动物的发育重现了两个适应性程序,首先是作为蝌蚪的淡水鱼程序,然后是成年后的陆地脊椎动物程序。然而,第二个程序并不完美,因为当动物处于露天环境时,皮肤会大量失水。这种损失必须通过肾单位、膀胱的水重吸收,主要是通过皮肤的水摄取来补偿。肾单位的水重吸收不如高等脊椎动物有效,但皮肤的水摄取至关重要,因为成年两栖动物像蝌蚪一样不饮水。适应发生在三个器官水平,即肾单位、膀胱和皮肤,其通透性受特定激素控制。除了对这三个器官有活性的加压素外,前加压素的差异成熟导致加工停滞的中间体,即在几乎所有无尾两栖动物中为催产素 - 甘氨酸,在非洲爪蟾中为催产素 - 甘氨酸 - 赖氨酸 - 精氨酸。这些中间体分别是由α - 酰胺化酶或羧肽酶E的下调产生的。它们被称为水调节蛋白2和水调节蛋白1,因为它们具有与加压素在皮肤和膀胱上相等或更强的水渗透特性。然而,与加压素不同的是,它们没有抗利尿活性。适应性进化除了在严格的陆生非哺乳四足动物中保留的渗透调节加压素 - 肾单位系统外,还创造了诸如水调节蛋白 - 皮肤和水调节蛋白 - 膀胱补水等额外功能,这些功能由特定的信使和器官完成。在真正的陆地脊椎动物中,辅助系统消失了,因为加压素 - 肾单位系统变得更加有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验