Suppr超能文献

Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage.

作者信息

Ma P X, Schloo B, Mooney D, Langer R

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA.

出版信息

J Biomed Mater Res. 1995 Dec;29(12):1587-95. doi: 10.1002/jbm.820291215.

Abstract

Neocartilage was engineered by culturing bovine chondrocytes on poly(glycolic acid) (PGA) fibrous nonwoven scaffolds. The biomechanical properties and morphologies of the PGA-chondrocyte constructs were studied over 12 weeks of in vitro culture. PGA scaffolds without cells lost their mechanical strength and structural integrity between week 2 and week 3 in culture. The thickness of the PGA-chondrocyte constructs decreased by 35% during the first 3 weeks, but the thickness increased from week 3 to week 9 to a thickness 42% higher than that of the starting scaffolds, which was then maintained. Safranin O staining of PGA-chondrocyte constructs revealed increasing proteoglycan formation over time. The compressive modules of PGA-chondrocyte constructs increased with in vitro culture time, and reached the same order of magnitude as that of normal bovine cartilage at week 9. The aggregate modulus of the PGA-chondrocyte constructs decreased by 57% over the first 2 weeks but then increased, reaching the same order of magnitude as normal bovine cartilage at week 12. The apparent permeability of the PGA-chondrocyte constructs, which was initially four orders of magnitude above that of normal cartilage, decreased between weeks 1 and 3 and thereafter remained the same order of magnitude as that measured for normal cartilage.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验