Suppr超能文献

细菌反应中心质子通道的鉴定:锌离子或镉离子结合对质子转移的抑制作用。

Identification of the proton pathway in bacterial reaction centers: inhibition of proton transfer by binding of Zn2+ or Cd2+.

作者信息

Paddock M L, Graige M S, Feher G, Okamura M Y

机构信息

Department of Physics, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 May 25;96(11):6183-8. doi: 10.1073/pnas.96.11.6183.

Abstract

The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the light induced two-electron, two-proton reduction of a bound quinone molecule QB (the secondary quinone acceptor). A unique pathway for proton transfer to the QB site had so far not been determined. To study the molecular basis for proton transfer, we investigated the effects of exogenous metal ion binding on the kinetics of the proton-assisted electron transfer kAB(2) (QA-QB- + H+ --> QA(QBH)-, where QA is the primary quinone acceptor). Zn2+ and Cd2+ bound stoichiometrically to the RC (KD </= 0.5 microM) and reduced the observed value of kAB(2) 10-fold and 20-fold (pH 8.0), respectively. The bound metal changed the mechanism of the kAB(2) reaction. In native RCs, kAB(2) was previously shown to be rate-limited by electron transfer based on the dependence of kAB(2) on the driving force for electron transfer. Upon addition of Zn2+ or Cd2+, kAB(2) became approximately independent of the electron driving force, implying that the rate of proton transfer was reduced (>/= 10(2)-fold) and has become the rate-limiting step. The lack of an effect of the metal binding on the charge recombination reaction D+QAQB- --> DQAQB suggests that the binding site is located far (>10 A) from QB. This hypothesis is confirmed by preliminary x-ray structure analysis. The large change in the rate of proton transfer caused by the stoichiometric binding of the metal ion shows that there is one dominant site of proton entry into the RC from which proton transfer to QB-* occurs.

摘要

球形红细菌的反应中心(RC)通过光诱导的对结合醌分子QB(次级醌受体)的双电子、双质子还原将光能转化为化学能。到目前为止,尚未确定质子转移至QB位点的独特途径。为了研究质子转移的分子基础,我们研究了外源金属离子结合对质子辅助电子转移kAB(2)(QA-QB- + H+ --> QA(QBH)-,其中QA是初级醌受体)动力学的影响。Zn2+和Cd2+以化学计量比结合到RC上(KD≤0.5 microM),并分别使观察到的kAB(2)值降低了10倍和20倍(pH 8.0)。结合的金属改变了kAB(2)反应的机制。在天然RC中,基于kAB(2)对电子转移驱动力的依赖性,先前已表明kAB(2)受电子转移的速率限制。加入Zn2+或Cd2+后,kAB(2)变得几乎与电子驱动力无关,这意味着质子转移速率降低(≥10(2)倍)并已成为速率限制步骤。金属结合对电荷复合反应D+QAQB- --> DQAQB没有影响,这表明结合位点距离QB很远(>10 Å)。初步的X射线结构分析证实了这一假设。金属离子化学计量结合引起的质子转移速率的巨大变化表明,存在一个质子进入RC的主要位点,质子从该位点转移至QB-*。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验