Suppr超能文献

Estimation of volume flow rate by surface integration of velocity vectors from color Doppler images.

作者信息

Sun Y, Ask P, Janerot-Sjöberg B, Eidenvall L, Loyd D, Wranne B

机构信息

Department of Electrical and Computer Engineering, University of Rhode Island, Kingston 02881, USA.

出版信息

J Am Soc Echocardiogr. 1995 Nov-Dec;8(6):904-14. doi: 10.1016/s0894-7317(05)80015-x.

Abstract

A new Doppler echocardiographically based method has been developed to quantify volume flow rate by surface integration of velocity vectors (SIVV). Electrocardiographic-gated color Doppler images acquired in two orthogonal planes were used to estimate volume flow rate through a bowl-shaped surface at a given time and distance from the probe. To provide in vitro validation, the method was tested in a hydraulic model representing a pulsatile flow system with a restrictive orifice. Accurate estimates of stroke volume (+/- 10%) were obtained in a window between 1.2 and 1.6 cm proximal to the orifice, just before the region of prestenotic acceleration. By use of the Bernoulli's equation, the estimated flows were used to generate pressure gradient waveforms across the orifice, which agreed well with the measured flows. To demonstrate in vivo applicability, the SIVV method was applied retrospectively to the determination of stroke volume and subaortic flow from the apical three-chamber and five-chamber views in two patients. Stroke volume estimates along the left ventricular outflow tract showed a characteristic similar to that in the in vitro study and agreed well with those obtained by the Fick oxygen method. The region where accurate measurements can be obtained is affected by instrumental factors including Nyquist velocity limit, wall motion filter cutoff, and color flow sector angle. The SIVV principle should be useful for quantitative assessment of the severity of valvular abnormalities and noninvasive measurement of pulsatile volume flows in general.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验